Use of Existing High Enriched MOX Fuel in an Experimental ADS

C.H.M. Broeders, J. Cetnar, R. Dagan, W. Gudowsky, A. Travleev

Outline of presentation:

- Introduction
- Characterization of existing fuels in Europe
- Core configurations considered
- Burn-up investigations for a core with SNR-300 fuel
- Summary and outlook

Part of the work was funded in the 5. Framework Program of the European Community, contract number FIKW-CT-2001-00179.

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Characterization of some existing fuels in Europe

- Fuels considered:
 - SNR300 fuel from former fast reactor program in Germany
 - SUPERPHENIX (SPX) fuel from fast reactor program in France
- Both fuel assembly types contain two axial blanket zones with depleted UO2
- Fabrication periods for both fuels between 1978 and 1988
- Plutonium compositions comparable, Am²⁴¹ seems not to be a major problem
- Use of both fuel types on assembly-, pin- and pellet- level seems feasible
- Because of the smaller core size, SNR300 fuel has higher fissile enrichment than SPX fuel

Use of Existing High Enriched MOX Fuel in an Experimental ADS

casing		fuel bundle			
form	hexagonal	number of fuel pins	166		
pads distance	115.0 mm	number of structure pins	3		
wrapper distance across flats	110.25 mm	spacers	14 grid spacers		
wrapper thickness	2.6 mm	pitch/diameter	7.9/6.0 = 1.316		
	fuel pin				
outer cladding diameter	6.00 mm	fertile fuel length	2 x 400 mm		
cladding thickness	0.38 mm	upper fission gas plenum length	43.0 mm		
fissile fuel length	950.0 mm	lower fission gas plenum length	645.0 mm		
pellet diameter	5.09 mm				

Main characteristics of the SNR-300 sub-assembly.

Use of Existing High Enriched MOX Fuel in an Experimental ADS

isotope	mass of fuel isotopes per one FA for different fuel types, (g/FA)			
	C1_MAG	C1_LWR	C2_LWR	
U ²³⁴	2.6	11.3	18.8	
U ²³⁵	76.2	127.9	128.6	
U ²³⁶	4.8	5.3	6.9	
U ²³⁸	19848.5	19512.1	16755.3	
Np ²³⁷	6.70	12.2	17.5	
Pu ²³⁸	8.7	40.9	73.7	
Pu ²³⁹	4921.8	4486.5	6219.7	
Pu ²⁴⁰	1360.9	1638.2	2265.6	
Pu ²⁴¹	49.2	114.8	206.5	
Pu ²⁴²	52.4	204.5	331.7	
Am ²⁴¹	197.3	393	616.4	
Total fuel	26529.10	26546.70	26640.70	
Pu _{-fi} +Am/HM	0.194816	0.188133	0.264355	

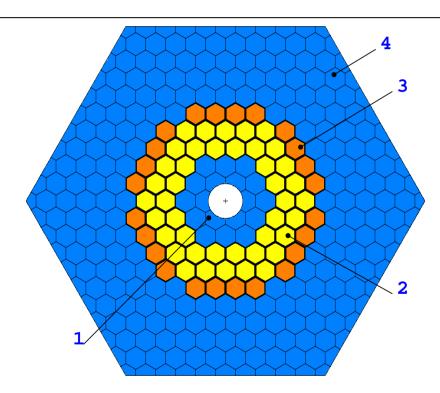
SNR-300 material composition in the year 2010 for the three existing fuel types. The data corresponds to 166 fuel pins in one FA.

Use of Existing High Enriched MOX Fuel in an Experimental ADS

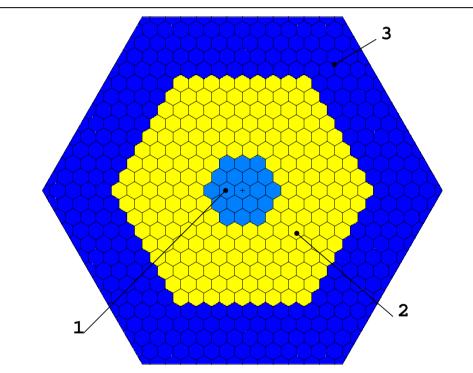
casing		fuel bundle		
form	hexagonal	number of fuel pins	271	
pads distance		number of structure pins	-	
wrapper distance across flats	173 mm	spacers	14 grid spacers	
wrapper thickness	4.6 mm	pitch/diameter	10.5/8.5=1.235	
		fuel pin		
outer cladding diameter	8.50 mm	fertile fuel length	2 x 300 mm	
cladding thickness	0.565 mm	upper gas plenum length	Total 852 mm	
fissile fuel length	1000.0 mm	lower gas plenum length		
pellet diameter	7.14 mm			

Main characteristics of the SPX sub-assembly.

Use of Existing High Enriched MOX Fuel in an Experimental ADS


isotope	mass of fuel isotopes per one FA for different fuel types, (g/FA)			
	R1-inner core	R2-inner core	R1-external core	R2-external core
U ²³⁴	28.9	37.7	56.1	27.1
U ²³⁵	408.7	404.7	381.0	383.6
U ²³⁶	9.43	30.7	34.3	31.7
U ²³⁸	75407	75060	70930	70944.3
Np ²³⁷	17.5	21.1	29.9	22.5
Pu ²³⁸	136.8	178.1	255.8	128.0
Pu ²³⁹	9854.7	9842.7	11765.0	12733.5
Pu ²⁴⁰	3702.5	3792.0	4832.4	4596.3
Pu ²⁴¹	394.1	508.2	658.7	542.2
Pu ²⁴²	533.2	720.4	1056.0	686.2
Am ²⁴¹	913.0	1114.7	1554.0	1189.0
Total fuel	91406	91710	91553	91284
Pu _{fis} + Am	0.1221	0.1250	0.1527	0.1584

SPX Fuel element material composition in the year 2010 for the three existing fuel types. The data corresponds to 271 fuel pins in one FA.


Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Use of Existing High Enriched MOX Fuel in an Experimental ADS

. Reference SNR–300 core design. Low enriched C1_MAG assemblies (zone 2) are surrounded by high-enriched fuel assemblies of type C2_LWR (zone 3), reflector made of LBE-structure mixture (zone 4).

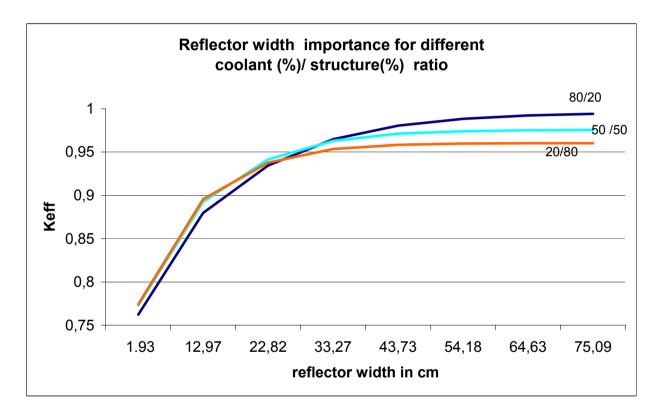
Core layout for the SPX fuel. Zone 1 – the target zone, represented by LBE mixed with structure material; zone 2 – most enriched SPX fuel in ANSALDO sub-assembly configuration; zone 3 – reflector, made of LBE - structure mixture

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Case		K _{eff}		
		TWODANT S8 12 groups	CITATION 12 groups	
ıder	300 K	1.006	0.996	
Cylinder	1273 K	0.994	0.983	
dral	300 K		0.994	
Hexahedral	1273 K		0.981 4 meshes 0.983 ^{*)}	

^{*)} source on, otherwise source off

SNR-300 fuel reference core results for K_{eff},

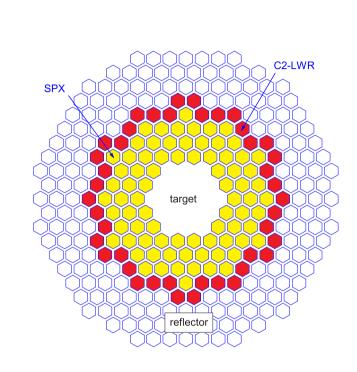

80% LBE and 20% structure material in the reflector and the central core (zones 1 and 4).

Use of Existing High Enriched MOX Fuel in an Experimental ADS

	/structure on, %vol	K _{eff} for the	
Target	reflector	"source off" option	
80/20	80/20	0.994	
100/0	100/0	1.019	
100/0	80/20	1.005	
100/0	50/50	0.985	
100/0	20/80	0.970	

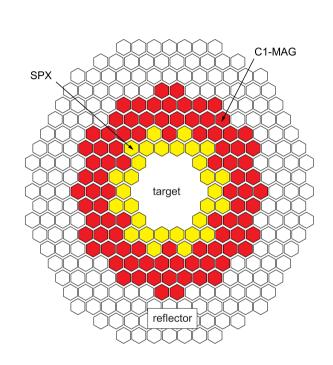
Influence of the structure material in the target and the reflector on K_{eff} in SNR300 core, calculated with cylindrical transport model of TWODANT at fuel temperature 1273 K.

Use of Existing High Enriched MOX Fuel in an Experimental ADS



 $K_{\rm eff}$ as a function of reflector thickness for the SNR300 core. Three coolant to structure volume ratios are considered for the reflector. The target region for all cases is represented by 80% of LBE and 20% of structure material. The fuel temperature is 1273 K.

Forschungszentrum Karlsruhe


in der Helmholtz-Gemeinschaft

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Design A

ANSALDO core layout for the two enrichment option. The target zone, represented by LBE mixed with structure material; SPX – most enriched SPX fuel; C2_LWR – most enriched SNR fuel, reflector is represented by homogenized LBE and structure mixture

Design B

ANSALDO core layout for the two enrichment option. The target zone, represented by LBE mixed with structure material; SPX – most enriched SPX fuel; C1_MAG – SNR fuel (with lower enrichment compared with C2_LWR), reflector is represented by homogenized LBE and structure mixture.

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Core layout	Design A	Design B
Number of SPX assemblies	78	30
Number of C1_MAG SNR assemblies		90
Number of C2_LWR SNR assemblies	42	
K _{eff}	0.9684	0.9717
Multiplicity with source on	0.9677	0.9722
Peak linear power (W/cm)	128.6	125.0
Mean linear power in SPX assembly (W/cm)	78.3	82.4
Mean linear power in C1_MAG assembly (W/cm)		89.7
Mean linear power in C2_LWR assembly (W/cm)	95.1	

Summary of results for designs A and B for a 80MW_{th} ANSALDO based XADS core design with mixed SNR300 and SPX fuel pellets.

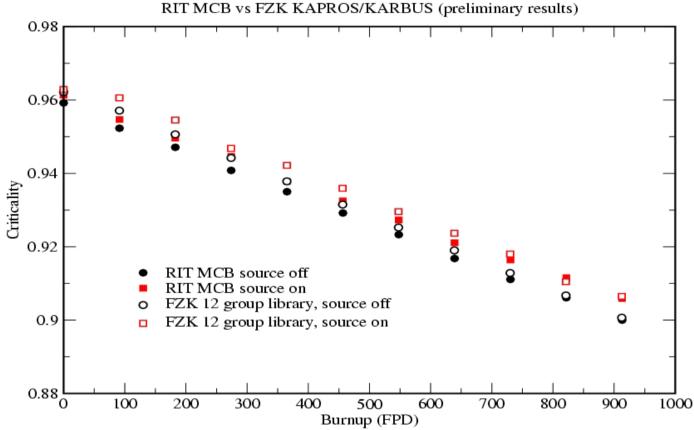
Use of Existing High Enriched MOX Fuel in an Experimental ADS

Burn-up investigations for an XADS core with SNR300 fuel

- Applied calculation methods
 - Monte Carlo code MCB1C by RIT Stockholm
 - Deterministic multi-group code system KAPROS by FZK Karlsruhe
- Calculation model
 - Appropriate (R-Z) geometry in both calculation methods
 - Three radial and eight axial burn-up zones same in both methods
 - Mostly same JEF2.2 data base for cross section data
 - Detailed source from MCNPX calculation in Monte Carlo method, simplified constant source treatment in deterministic code
- Satisfactory agreement in preliminary results; reactivity loss 6..7 pcm/fpd

Forschungszentrum Karlsruhe

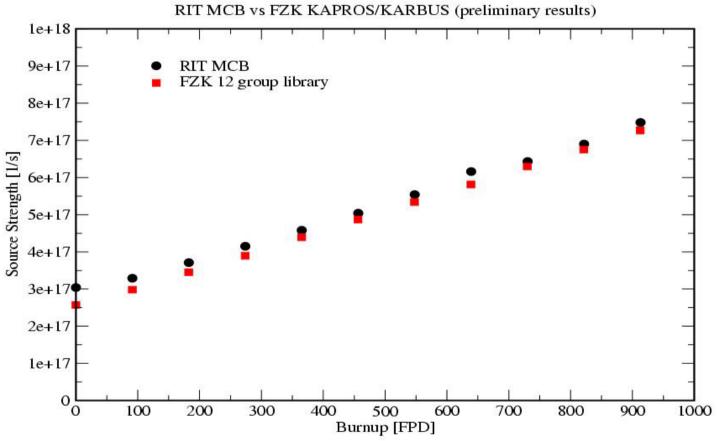
in der Helmholtz-Gemeinschaft


Use of Existing High Enriched MOX Fuel in an Experimental ADS

Time[yr]	P [MW]	Src Str [1/s]	K _{eff}	Ks
BOL	80	3.04E+17	0.9592	0.9613
0.25	80	3.29E+17	0.9523	0.9547
0.50	80	3.71E+17	0.9471	0.9496
0.75	80	4.15E+17	0.9408	0.9446
1.00	80	4.58E+17	0.9350	0.9378
1.25	80	5.04E+17	0.9292	0.9325
1.50	80	5.54E+17	0.9233	0.9273
1.75	80	6.16E+17	0.9168	0.9211
2.00	80	6.43E+17	0.9111	0.9164
2.25	80	6.90E+17	0.9061	0.9116
2.50	80	7.48E+17	0.9000	0.9059
2.75	80	7.70E+17	0.8946	0.9014

Summary of MCB1C results for LBE cooled XADS with SNR300 fuel

Use of Existing High Enriched MOX Fuel in an Experimental ADS


Comparison of criticality results for XADS with SNR300 fuel

Comparison of RIT Monte Carlo and FZK deterministic results for burn up dependant criticality values for XADS with SNR300 fuel. Source on/off states are plotted.

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Comparison of neutron source strength for XADS with SNR300 fuel

Comparison of RIT Monte Carlo and FZK deterministic results for burn up dependant source strength for XADS with SNR300 fuel

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Transmuted Mass of Actinides in XADS with SNR300 Fuel Comparison of RIT and FZK Results 20000 -20000 Mass [g] -40000 o- -o FZK U238 □ -□ FZK PU239 -60000 ◆ ◆ FZK PU240 -80000 0.5 1.5 2 2.5 Burnup [years]

Comparison of RIT Monte Carlo and FZK deterministic results for burn up dependant mass change

Use of Existing High Enriched MOX Fuel in an Experimental ADS

Summary and outlook

- Several options for the utilization of existing high enriched fuel from European fast reactor programs in an XADS core have been analyzed
- Use of slightly modified FA, of fuel pins and of fuel pellets are considered
- From neutron physics point of view, use of SNR300 FA is feasible
- Because of lower enrichments, use of SPX fuel leads to much larger cores
- If SPX fuel is to be used, the ANSALDO design for a 80 MW_{th} XADS core needs reprocessing and increasing of the fissile enrichment
- An interesting option could be the mixed application of pellets from SNR300 and from SPX fuel. The different pellet diameter of this fuel would require FA with same outer dimensions and also different lattice pitch