

April 1968

KERNFORSCHUNGSZENTRUM

KARLSRUHE

KFK 770 EUR 3953 d

Institut für Neutronenphysik und Reaktortechnik

Gruppenkonstanten für dampf- und natriumgekühlte schnelle Reaktoren in einer 26-Gruppendarstellung

zusammengestellt von

H. Huschke

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H. Karlsruhe .

KERHFORSCHUNGSZENTRUM KARLSRUHE

April 1968

KFK-770 EUR-3953 d

Institut für Neutronenphysik und Reaktortechnik

Gruppenkonstanten für dampf- und natriumgekühlte schnelle Reaktoren in einer 26-Gruppendarstellung *)

Zusammengestellt von

H. Huschke

mit Beiträgen von

- H. Bachmann
- R. Froelich
- B. Krieg
- H. Küsters
- M. Metzenroth
- D. Moll
- Diese Arbeit wurde im Rahmen der Assoziation zwischen der Europäischen Atomgemeinschaft und der Gesellschaft für Kernforschung m.b.H. Karlsruhe auf dem Gebiet der schnellen Reaktoren durchgeführt.

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Inhaltsverzeichnis	Seite
Einleitung	I
1. Die Approximation der energieabhängigen P1-Gleichungen dur Mehr-Gruppen-Diffusionsgleichungen	ch 1-1
1.1 Die Herleitung der Diffusionsgleichungen	1=1
1.2 Die Gruppenkonstanten	1-3
1.3 Die Diffusionskonstante	1-11
1.4 Die Ortsabhängigkeit der Gruppenkonstanten	1-17
1.5 Liste der benötigten mikroskopischen Gruppenkonstanten	1-18
2. Die Berechnung der energetischen Selbstabschirmfaktoren	2-1
2.1 Der Bereich der aufgelösten, gemessenen Resonanzen	2-1
2.2 Die Berechnung der energetischen Selbstabschirmfaktore von Resonanzparametern	n 2 - 4
2.3 Die Berechnung der energetischen Selbstabschirmfaktore aus statistischen Größen	n 2 - 7
2.4 Die Berechnung von Gruppenkonstanten aus Meßkurven	2-22
3. Die Berechnung der elastischen Streumatrix	3–1
3.1 Isotrope Streuung im C-System	3-2
3.2 Anisotrope Streuung im C-System	3-5
3.3 Die Streumatrix für Wasserstoff	3-8
3.4 Die Resonanzselbstabschirmung	3 -8 %
3.5 Die Berechnung der Streumatrix unter exakter Berück- sichtigung der Resonanzstruktur in der "Narrow- Besonance" Approximation	8-0 3 - 9
3.6 Der bremselastische Guerschnitt	3-10
	l
4. Die Berechnung der inelastischen Streumatrix	4+ mm [
5. Die Berechnung der Diffusionskonstante bzw. des Transportgruppenquerschnitts	5-1
5.1 Keine isotrope Überstreuung	5 1
5.2 Der Transportquerschnitt für Vasserstoff	5-2
6. Die Beschreibung der Gruppensätze und Tabellen	6-1
6.1 Der KFK-SNEAK Cruppensatz	6-1
6.2 Der KFK-H20-PMB Gruppensatz	6-2
6.3 Der KFK-NAP-PMB Gruppensatz	6-3
6.4 Zusammenstellung der in den Gruppensätzen KFK-SNEAK, KFK-H2D-PMB, KFK-NAP-PMB enthaltenen Gruppenkonstanten	6-4
6.5 Der 1/v-Mittelwert, das Neutronen-Spaltspektrum	6 -5

~

		Seite
	6.6 Wasserstoff H	6 - 6
	6.7 Kohlenstoff C	6 - 9
	6.8 Sauerstoff 0	6-12
	6.9 Natrium Na	6-15
	6.10 Aluminium Al	6 – 18
	6.11 Chrom Cr	6 - 21
	6.12 Eisen Fe	6-24
	6.13 Nickel Mi	6-27
	6.14 U235	6 - 30
	6.15 U238	6-37
	6.16 Pu239	6-43
	6.17 Neuere Spalt- und Absorptionsquerschnitte von U235 und U238	6-50
	6.18 Bremselastische Querschnitte für Core und Blanket eines natriumgekühlten Reaktors	6-51
74	Literaturverzeichnis	7-1
8.	Anhang I: Verzeichnis der verwendeten Symbole	8-1
9٠	Anhang II: Hinweise auf die Berechnung von makroskopischen Gruppenkonstanten in der Querschnittsphase von MUSYS	9-1
10	Anhang III: Bemerkungen zur numerischen Genauigkeit der energetischen Selbstabschirmfaktoren.	10-1
11,	Anhang IV: Bemerkungen zum ABN-Gruppenkonstantensatz,	11-1

Abbildungen

Einleitung

Der hier vorliegende Satz von Gruppenkonstanten ist als Weiterentwicklung des russischen ABN^[1] und des ersten Karlsruher^[4] KFK-26-10-Gruppenkonstantensatzes entstanden. Der russische Gruppensatz hat sich bei der Auslegung von schnellen Reaktoren als gutes Instrument erwiesen, da er in relativ flexibler Weise die Resonanzselbstabschirmung zu berücksichtigen gestattet, welche bei schnellen Reaktoren der zweiten Generation (oxidische Brennstoffe) mit relativ weichen Spektren einen merklichen Einfluß auf interessierende Größen hat.

Vergleiche mit Experimenten zeigten, daß eine Aufnahme neuerer Kerndaten umerläßlich war, zumal seit der Erstellung des ABN-Gruppensatzes eine Vielzahl neuer Messungen von Wirkungsquerschnitten durchgeführt wurden. 1965 wurde deshalb als erster Schritt ein erster Karlsruher Gruppensatz erstellt. Er unterschied sich vom ABN-Satz im wesentlichen durch die nicht abgeschirmten Gruppenquerschnitte, die für die wichtigsten Reaktormaterialien aus Kerndaten des Karlsruher Kerndatenbandes neu berechnet wurden. Gleichzeitig vurde das im ABN-Satz verwendete 1/E Spaktrum durch ein typisches Stoßdichtespektrum eines natriumgekühlten Reaktors ersetzt. Neuberechnet wurden auch die elastischen Streumatrizen nach den in dieser Arbeit in Kapitel 3.1 und 3.2 angegebenen Formeln.

Unverändert übernommen wurden die energetischen Selbstabschirmfaktoren. Der zweite Schritt war die Erstellung des hier vorliegenden Gruppenkonstantensatzes. Im Gegensatz zu KFK 26-10 wurde zur Wichtung der Gruppenkonstanten das Stoßdichtespektrum eines dampfgekühlten schnellen Reaktors verwendet, welcher in der SNEAK-3A-2 Anordnung ^[13] mit einer äquivalenten Dampfdichte von $\rho = 0.07$ gr/cm³ (mit U235 als Spaltstoff) simuliert wurde. Dieses Stoßdichtespektrum wurde durch Ausschmieren eines 26-Gruppenspektrums gewonnen, welches mit den ABN- und KFK 26-10-Gruppensätzen ermittelt wurde.

Dieser Gruppensatz, der den Namen KFK-SNEAK trägt (herrührend von der Wichtung), beruht auf Kerndaten des Karlsruher Kerndatenbandes ^[6]. Neben den nicht abgeschirmten Querschnitten wurden auch - mit wenig Ausnahmen die wichtigsten energe ischen Selbstabschirmfaktoren neu berechnet. Die Berechnungsmethoden sind in dieser Arbeit angegeben. Besonderes Gewicht wurde auf die Isotope U235, U238, Pu239 sowie auf die elastischen Streumatrizen gelegt. Für die genannten Isotope sind neben den von ^[6] berechneten Werten auch noch Gruppenkonstanten für $\sigma_v(U235), \sigma_v(U238)$ und $\sigma_f(U235)$

- I -

im Bereich von 40 keV - 400 keV tabelliert, die auf Messungen und Renormierungsbetrachtungen von W.P. Poenitz, H.U. Menlove, K.H. Beckurts beruhen^[11]. Diese Daten wurden durch die Buchstaben PMB klassifiziert. Detaillierte Untersuchungen wurden über den Einfluß der elastischen Streumatrix gemacht. Diese ist im Gegensatz zu den übrigen Gruppenkonstanten recht stark von der Wahl der Wichtungsfunktion abhängig. Es wurden deshalb für zwei Core- und Blanket-Wichtungsppektren eines 300 MWe natriumgekühlten schnellen Prototyp Reaktors die elastischen Streumatrizen berechnet und tabelliert. Zusammen mit den übrigen von KFK-SNEAK übernommenen Gruppenkonstanten stellt dies den KFK-NAP Satz (Ha-Prototyp) dar.

In Kapitel 3.5 wird ferner eine genauere Berechnungsart für die elastische Streumatrix angegeben, die allerdings eine Neuberechnung aus mikroskopischen energieabhängigen Kerndaten für jede Reaktorberechnung erfordert. Eine Tabellierung in Form von Gruppenkonstanten ist deshalb nicht möglich.

Ein 26-Gruppensatz in der vorliegenden Form ist natürlich in seiner Anwendung beschränkt. Die hier aufgeführten Gruppenkonstanten sind nur für schnelle Reaktoren vorgeschen, Aussagen im niederenergetischen Bereich sind deshalb entsprechend unsicher. Aufwärtsstreuung wird nicht berücksichtigt.

Der nächste Schritt führt von einem 26-Gruppensatz zu vielen Gruppen (größer als 200). Dies ist notwendig, um bessere Information über die ortsabhängige Feinstruktur der Neutronenspektren zu erhalten und damit einen direkten Vergleich mit experimentell gemessenen Spektren in Nullenergieanordnungen durchführen zu können. Daran schließt sich dann ebenfalls eine weitere Verbesserung der "Grob"gruppenkonstanten an.

Charakterisierung der Gruppensätze.

Name	Wichtung	Ausgangsdaten
KFK - SNEAK	Dampfreaktor	[6]
KFK-H2O-PMB	Dampfreaktor	[6], [11]
KFK-NAP2PMB	Natriumprototyp	[6], [11]

Die Neuberechnung der Gruppenkonstanten betrifft die Isotope H, C, O, Na, Al, Cr, Fe, Ni, U235, U238, Pu239. Vom 26-Gr. ABN-Satz (GROUCO 7) wurden folgende Materialien unverändert übernommen: D, He, Li6, Be, B10, B11, N, Ng, Si, Cl, K, Ca, Ti, V, Zr, Nb, Mo, Eu, Gd, Hf, Ta, Pb, Bi, Th232, U233, Pu240, Pu241, Pu242. Ferner wurden Spaltprodukte für Pu239 sowie zwei fiktive Materialien übernommen. <u>Es ist zu beachten</u>, daß der 26-GR.ABN-Satz gegenüber dem in [1] tabellierten Gruppensatz leicht abgeändert ist. Die Unterschiede sind in Anhang IV aufgeführt. 1. Die Approximation der energieabhängigen P1-Gleichungen durch Mehr-Gruppen-Diffusionsgleichungen. Definition der Gruppenkonstanten.

1.1

Die energieabhängigen P1-Gleichungen haben für den stationären Fall und für ortsunabhängige. Wirkungsquerschnitte die Form

$$\operatorname{div} j(\vec{r}, E) + \sum_{t} (E)_{\phi}(\vec{r}, E) = \int_{0}^{\infty} dE^{*} \sum_{t} (E^{*} \rightarrow E)_{\phi}(\vec{r}, E^{*})$$

$$+ \chi(E) \int_{0}^{\infty} dE^{*} _{\nu}(E^{*}) \sum_{f} (E^{*})_{\phi}(\vec{r}, E^{*}) + Q(\vec{r}, E)$$

$$\stackrel{*}{\circ}$$

$$\frac{1}{3} \operatorname{grad}_{\phi}(\vec{r}, E) + \sum_{t} (E) \overline{j}(\vec{r}, E) = \int_{0}^{\infty} dE^{*} \sum_{t} (E^{*} \rightarrow E) j(\vec{r}, E^{*})$$

$$(1.1b)$$

Im monoenergetischen Fall ist die P1-Approximation identisch mit der Diffusionsnäherung. Gleichung (1b) stellt dann das Fick'sche Gesetz dar.

Im energieabhängigen Fall stellt (1.1b) nicht mehr das Fick'sche Gesetz dar. Erfolgt die Lösung der P1-Gleichungen aber in einem Mehrgruppenbild, so kann das Fick'sche Gesetz in jeder Energiegruppe postuliert werden. Die dabei auftretenden gruppenabhängigen Diffusionskonstanten, bzw. die entsprechenden Transportquerschnitte, müssen so bestimmt werden, daß Gleichung (1.1b) möglichst gut approximiert wird.

Beim Übergang zu der Mehrgruppendarstellung soll vorerst nur Gleichung (1.1a) behandelt werden. Die Definition der Diffusionskonstante und damit die Approximation von (1.1b) wird in Kapitel 1.3 erläutert. Bei der Behandlung der Energieabhängigkeit kommt man zum Multigruppenkonzept. Bei einer Aufteilung des Energiebereiches in n Gruppen erhält man für (1.1a) ein Gleichungssystem von n Gleichungen. Die Gruppennummerierung beginnt bei der höchsten Energie. Für die g-te Gruppe erhält man

*) Die Erklärung der verwendeten Symbole wird im Anhang gegeben.

$$\int_{(g)} dE \, div \, j(\vec{r}, E) + \int_{(g)} dE \sum_{t} (E) \phi(\vec{r}, E)$$

$$= \int_{(g)} dE \int_{dE'} \sum_{t} (E' \rightarrow E) \phi(\vec{r}, E') + \int_{(g)} dE \, \chi(E) \int_{dE'} \psi(E') \sum_{t} (E') \phi(\vec{r}, E') + \int_{(g)} dE \, Q(\vec{r}, E) \qquad (1.2)$$

Die einzelnen Summanden können umgeformt werden. Als Gruppenfluß wird definiert

$$\phi_{g}(\vec{r}) = \int dE\phi(\vec{r}, E)$$
(1.3)

und ferner wird der Ansatz gemacht

$$\int_{g} dE div j(E,\vec{r}) \equiv D_{g}(\vec{r}) \Delta \phi_{g}(\vec{r})$$
(1.4)

Eine Begründung für diesen Ansatz wird in Kapitel 1.3 gegeben. Damit kann man Gleichung (1.2) schreiben als

$$D_{g}(\vec{r}) \Delta \phi_{g}(\vec{r}) + \sum_{t,g} (\vec{r}) \phi_{g}(\vec{r}) = S_{h \neq g} \sum_{h \neq g} (\vec{r}) \phi_{h}(\vec{r}) *$$

$$+ \chi_{g h} \sum_{h} v_{h} \sum_{f,h} (\vec{r}) \phi_{h}(\vec{r}) + Q(\vec{r})$$
(1.5)

Ein Vergleich von (1.2) und (1.5) unter Berücksichtigung von (1.3) und (1.4) ergibt die Definitionsgleichungen der in (1.5) auftretenden Gruppenkonstanten, mit Ausnahme von D_g.

122

^{*)} Aufwärtsstreuung wird vernachlässigt.

Definiert man

$$\sum_{\text{rem,g}} \equiv \sum_{t,g} - \sum_{g \neq g}$$
(1.6)

wobei nun $\sum_{\text{rem,g}} \phi_g$ den totalen Neutronenverlust aus der Gruppe g darstellt (ausgenommen Verlust durch Leckage), so geht (1.5) über in

$$D_{g}(\vec{r}) \Delta \phi_{g}(\vec{r}) + \sum_{\text{rem},g} (\vec{r}) \phi_{g}(\vec{r}) = S_{h < g} \sum_{h \to g} (\vec{r}) \phi_{h}(\vec{r})$$

$$+ \chi_{g} S_{h} v_{h} \sum_{f,h} (\vec{r}) \phi_{h}(\vec{r}) + Q(\vec{r}) \qquad (1.7)$$

1.2 Die Gruppenkonstanten

$$\sum_{t,g} (\vec{r}) \phi_{g}(\vec{r}) = \int_{(g)} dE \sum_{t} (E) \phi(\vec{r}, E)$$
(1.8)

Daraus folgt

$$\sum_{t,g} (\vec{r}) \equiv \frac{\int dE \sum_{t} (E) \phi(\vec{r}, E)}{\int dE \phi(\vec{r}, E)}$$
(1.9)

Man führt nun für alle interessierenden Neutronenreaktionen isotopenbezogene mikroskopische effektive Gruppenvirkungsquerschnitte der Art

$$\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\vec{r}) \equiv \frac{\int d\mathbf{E} \ \sigma_{\mathbf{x}}^{\mathbf{K}}(\mathbf{E})\phi(\vec{r},\mathbf{E})}{\int d\mathbf{E} \ \phi(\vec{r},\mathbf{E})}$$
(1.10)

ein.

)

Es gilt dann:

8

$$\sum_{t,g} = \underset{K \times}{S S N} \sigma_{x,g}^{K}$$
(1.11)

$$\int_{(g)} dE \tilde{x}(E) \int_{f} dE^{\dagger} v(E^{\dagger}) \sum_{f} (E^{\dagger}) \phi(\vec{r}, E^{\dagger}) \equiv x_{g} \int_{h}^{S} v_{h} \sum_{f,h} (\vec{r}) \phi_{h}(\vec{r}) \qquad (1.12)$$

Daraus folgt

$$g = \int_{(g)} dE \chi(E)$$
(1.13)

und

$$v_{h} \sum_{f,h} (\vec{r}) \equiv \frac{\int dE' v(E') \sum_{f} (E') \phi(\vec{r},E')}{\int dE' \phi(\vec{r},E')}$$
(1.14)
(1.14)

Da v(E') eine in einer Gruppe "vernünftiger" Breite für schnelle Reaktoren schwach veränderliche Größe darstellt, kann sie vor das Integral gezogen werden. Nach Aufspalten in die Isotopenanteile erhält man

$$v_{g}^{K} \equiv \frac{\int_{(g)} v^{K}(E) dE}{\int_{(g)} dE}$$
(1.15)

 $\sigma_{f,g}^{K}$ ist dann definiert wie in (1.9)

Es gilt dann

$$\mathbf{v}_{\mathbf{h}} \sum_{\mathbf{f},\mathbf{h}} = \underset{K}{\mathbf{S}} \mathbb{N}^{K} \mathbf{v}_{\mathbf{h}}^{K} \sigma_{\mathbf{f},\mathbf{h}}^{K}$$

(1.16)

1=4

$$\int_{g} dE \int_{0} dE' \sum (E' \rightarrow E) \phi(\vec{r}, E') \equiv S_{h < g} \sum_{h \rightarrow g} (\vec{r}) \phi_{h}(\vec{r})$$
(1.17)

In $\sum (E' \rightarrow E)$ bzw. $\sum_{h \rightarrow g} (\vec{r})$ sind elastische und unelastische Streuung sowie (n,2n)-Prozesse enthalten. Wegen ihrer grundsätzlichen Verschiedenheit sollen sie getrennt behandelt werden. Zuerst der Anteil der elastischen Streuung.

$$\int_{a}^{E} dE \int_{a}^{max} dE' \sum_{e} (E' \rightarrow E) \phi(\vec{r}, E') = S \qquad \sum_{h \leq g}^{K} \phi_{h}(\vec{r}) \qquad (1.17a)$$

E ist isotopenabhängig.

$$\int_{g} dE \int_{E} dE' \sum_{e}^{K} (E' \rightarrow E) \phi(\vec{r}, E') = S \sum_{h \leq g} \sum_{e, h \rightarrow g} (\vec{r}) \phi_{h}(\vec{r})$$
(1.17b)

(1.17b) läßt sich aufspalten in

und

$$\int_{e_{g+1}}^{E} dE' \sum_{e}^{K} (E' \rightarrow E) \phi(\vec{r}, E') = \sum_{e,g \rightarrow g}^{K} (\vec{r}) \phi_{g}(\vec{r}) \qquad (1.17d)$$

(1.17c) kann weiter zerlegt werden. Es sind zwei Fälle zu unterscheiden: Fall a: keine Überstreuung, d.h. es wird immer nur in die nächste Gruppe mit höherer Gruppennummer bzw. kleinerer Energie gestreut. Dann erhält man

1-5

$$\sum_{h < g}^{K} \sum_{e,h \neq g}^{K} (\vec{r}) \phi_{h}(\vec{r}) \equiv \sum_{e,j}^{K} (g-1) \phi_{g-1}(\vec{r}) \phi_{g-1}(\vec{r})$$

und

$$\sum_{e,(g-1)\rightarrow g}^{K}(\vec{r}) \equiv \frac{\sum_{g}^{E} \langle \alpha^{K}, E^{*} \rangle}{\int_{E}^{E} dE^{*} \phi(\vec{r}, E^{*}) \int_{e}^{G} dE \sum_{e}^{K} (E^{*} \rightarrow E)}{\left[\max(E_{g+1}, E^{*} \alpha^{K})\right]}$$
(1.18a)

$$\int_{E}^{E} dE^{*} \phi(\vec{r}, E^{*})$$

$$\sum_{e_{g}h \to g}^{K}(\vec{r}) \equiv 0 \quad \text{für } h < g - 1 \qquad (1.18b)$$

Fall b: Überstreuung, d.h. $E_g/\alpha^K > E_{g-1}$, dann erhält man für alle h < g, für die gilt $E_n \leq E_g/\alpha^K$

$$\sum_{e,h \to g}^{K} (\vec{r}) \equiv \frac{\int_{E_{h+1}}^{E} dE' \phi(\vec{r},E') \int_{e_{g+1},\alpha \in E_{e}}^{E} dE \sum_{e \in K_{e}}^{k} (E' \to E)}{\int_{E_{h+1}}^{E} dE' \phi(\vec{r},E')}$$

$$= \frac{\int_{E_{h+1}}^{h} dE' \phi(\vec{r},E')}{\int_{E_{h+1}}^{E} dE' \phi(\vec{r},E')}$$

und

$$\sum_{e,h \neq g}^{K} (\vec{r}) \equiv \frac{\int_{e}^{g} \langle \alpha^{K} \rangle E^{*} (\vec{r},E^{*}) \int_{e}^{g} dE \sum_{e}^{K} (E^{*} \rightarrow E)}{\sum_{e,h \neq g}^{E} (\vec{r},E^{*})}$$

$$= \frac{\sum_{h+1}^{E} \langle \alpha^{K} E^{*} \rangle}{\sum_{h+1}^{E} dE^{*} \phi(\vec{r},E^{*})}$$

für $E_{h+1} < E_g / \alpha^K < E_h$

(1,19b)

(1.19a)

1-6

(1.17d) läßt sich noch weiter umformen

$$\int_{E_{g+1}}^{E} dE \int_{E}^{E} dE' \sum_{k}^{K} (E' + E) \phi(\vec{r}, E') =$$

$$= \int_{E_{g+1}}^{E} dE' \phi(\vec{r}, E') \int_{\alpha}^{E} dE \sum_{k}^{K} (E' + E) - \int_{E_{g+1}}^{\min(E_{g+1}/\alpha^{K}, E_{g})} dE' \phi(\vec{r}, E') \int_{\alpha}^{E} dE \sum_{k}^{K} (E' + E)$$

$$= \int_{E_{g+1}}^{E} dE' \sum_{k}^{K} (E') \phi(\vec{r}, E') - \int_{E_{g+1}}^{\min(E_{g+1}/\alpha^{K}, E_{g})} dE' \phi(\vec{r}, E') \int_{\alpha}^{E} dE \sum_{k}^{K} (E' + E) =$$

$$= \sum_{k}^{E} dE' \sum_{k}^{K} (E') \phi_{k}(\vec{r}) - \sum_{k}^{S} \sum_{k}^{K} (E' + E') \phi_{k}(\vec{r}) =$$

$$(1.21)$$

Dabei ist $\sum_{e,g}^{K}$ definiert wie in (1.9). Daraus folgt

$$\sum_{e,g \neq g}^{K} = \sum_{e,g}^{K} - s \sum_{h>g}^{K} \sum_{e,g \neq h}^{K}$$

(1.22)

Führt man mikroskopische Querschnitte ein, so erhält man

Fall a: keine Überstreuung

$$\sigma_{e_{\mathfrak{g}}(g-1) \rightarrow g}^{K}(\vec{r}) \equiv \frac{\int_{e_{g}}^{g/\alpha^{K}} dE^{\dagger}\phi(\vec{r},E^{\dagger}) \int_{e_{g}}^{g} dE\sigma_{e}^{K}(E^{\dagger} \rightarrow E)}{\int_{e_{g}}^{E} dE^{\dagger}\phi(\vec{r},E^{\dagger})}$$

$$\sigma_{e,h \rightarrow g}^{K}(\vec{r}) \equiv 0$$
 für $h < g = 1$

Fall b: mit Überstreuung

$$\sigma_{e,h \to g}^{K}(\vec{r}) \equiv \frac{\int_{e_{h+1}}^{E_{h+1}} dE'\phi(\vec{r},E') \int_{e_{h+2}}^{E_{g+1}} dE\sigma_{e}^{K}(E' \to E)}{\int_{e_{h+1}}^{E_{h+1}} dE'\phi(\vec{r},E')}$$

für alle h < g, für die $\mathbb{E}_{h} \leq \mathbb{E}_{g}/\alpha^{K}$

sonst

$$\sigma_{e,h \rightarrow g}^{K}(\vec{r}) \equiv \frac{\sum_{h=1}^{E} \sigma_{e}^{K}}{\sum_{h=1}^{E} \sigma_{e}^{K}(\vec{r},E^{*})} \int_{e}^{E} dE \sigma_{e}^{K}(E^{*} \rightarrow E)}{\sum_{h=1}^{E} \sigma_{e}^{K}(\vec{r},E^{*})}$$

(1,23b)

(1.23a)

Ferner gilt

$$\sigma_{e,g \neq g}^{K} = \sigma_{e,g}^{K} - S \sigma_{e,g \neq h}^{K}$$

Die makroskopische elastische Streumatrix ist dann

$$\sum_{e_{h} \to g} = \sum_{K} \sqrt[K]{\sigma_{e_{h} \to g}} \qquad \text{für alle } h \le g \text{ und alle } g \qquad (1.25)$$

Für die inelastische Streuung lassen sich formal dieselben Ausdrücke herleiten

$$\sigma_{in,h\rightarrow g}^{K}(\vec{r}) \equiv \frac{\int_{h+1}^{E} dE'\phi(\vec{r},E') \int_{e}^{E} dE\sigma_{in}^{K}(E'\rightarrow E)}{\int_{h+1}^{E} dE'\phi(\vec{r},E')}$$

$$\sigma_{\text{in,g}\rightarrow\text{g}}^{\text{K}} = \sigma_{\text{in,g}}^{\text{K}} - S_{\text{h'>g}}^{\text{K}}$$

$$\sum_{in,h \neq g} = S \mathbb{R}^{K} \sigma_{in,h \neq g}^{K}$$

(1.28)

(1.26)

(n,2n)-Prozesse können ebenfalls als Streuung behandelt werden.

Sei $P_{2n,g}^{K}(E^{*})$ die Wahrscheinlichkeit, daß ein Neutron, das aus einer (n,2n)-Reaktion bei der Energie E' resultiert, sich in der Energiegruppe g befindet (S $P_{2n,g}^{K}(E^{*})=1$).

Damit läßt sich eine mikroskopische Streumatrix wie folgt definieren

$$\sigma_{2n,h \to g}^{K}(\vec{r}) = \frac{\int_{h+1}^{E_{h+1}} (2 \cdot \sigma_{2n}^{K}(E')) P_{2n,g}^{K}(E')}{\int_{h+1}^{E_{h+1}} dE' \phi(\vec{r},E')}$$
(1.29)

und die makroskopische Streumatrix ist dahn

$$\sum_{2n,h \to g} (\vec{r}) = \underset{K}{S} \underset{N}{\overset{K}{n}} \sigma_{2n,h \to g}^{K} (\vec{r})$$
(1.30)

Die Zahl der Neutronen in g, die durch (n,2n)-Prozesse in h erzeugt werden, ist dann gegeben durch $\sum_{2n,h \to g} (\vec{r}) \cdot \phi_h(\vec{r})$

Da S $\sigma_{2n,g \rightarrow h}^{K}$ = 2 $\sigma_{2n,g}^{K}$, erhält man für das Hauptdiagonalelement

$$\sigma_{2n,g \rightarrow g}^{K} = 2 \cdot \sigma_{2n,g}^{K} - \sum_{h' > g}^{S} \sigma_{2n,g \rightarrow h'}^{K}$$
(1.31a)

$$\sum_{2n,g \neq g} = \sum_{K} N^{K} \sigma_{2n,g \neq g}^{K}$$
(1.31b)

1.3 Die Diffusionskonstante

Die in (114) angegebene Beziehung kann nur näherungsweise erreicht werden. Zur optimalen Bestimmung von D_g muß Gleichung (1.1b) herangezogen werden. Dazu wird zuerst "div" auf beide Seiten von (1.1b) angewendet. Man erhält

$$\frac{1}{3}\Delta\phi(\vec{r},E) + \sum_{t} (E) \operatorname{div} j(\vec{r},E) = \int dE'_{1} \sum (E' \rightarrow E) \operatorname{div} j(\vec{r},E') \qquad (1.32)$$

Durch Integration und indem man das erste Noment des Streukerns wie das jenige des nullten Moments behandelt, erhält man für die g-te Energiegruppe

$$\frac{1}{3}\Delta\phi_{g}(\vec{r}) + \sum_{t,g}^{\sim}(\vec{r})\operatorname{div} j_{g}(\vec{r}) = \underset{h \leq g}{\mathrm{s}} \sum_{h \neq g}^{\sim}(\vec{r})\operatorname{div} j_{h}(\vec{r})$$
(1.33)

mit

(Das Zeichen \sim bezieht sich auf die Art der Wichtung. Größen ohne \sim sind flußgewichtet, Größen mit \sim sind mit der Divergenz des Stromes gewichtet. $_{1}\sum_{h \rightarrow g} (\vec{r})$ stellt das erste Moment der Streumatrix dar, wobei sich \sim auf die Wichtung bezieht, die Eins auf das Moment.)

Es wird nur die Anisotropie der elastischen Streuung berücksichtigt, da die Anisotropie der inelastischen Streuung vernachlässigbar ist.

dE'₁∑(E'→E) div j(r,E') läßt sich auf dieselbe Weise behandeln wie dE'∑(E'→E)φ(r,E').

1-11

Man erhält dann

$$\sum_{1\leq e,h \to g}^{\infty}(\vec{r}) = \sum_{K} \sum_{1\leq e,h \to g}^{K}(\vec{r}) \quad \text{für alle } h \leq g \text{ und alle } g \quad (1.34)$$

Fall a: keine Überstreuung

$$1^{\widetilde{\sigma}}_{e,(g-1) \rightarrow g}(\vec{r}) = \frac{\sum_{g=1}^{k} \langle \vec{r}, E' \rangle_{K_{e}}^{g}}{\sum_{g=1}^{k} \operatorname{divj}(\vec{r}, E')} dE_{\sigma}_{e}^{K}(E' \rightarrow E) \mu^{K}(E', E)$$

$$\sigma^{\kappa}_{1}(\vec{r}) \equiv 0$$
 für $h < g - 1$

Fall b: mit Überstreuung

$${}_{1}^{\sim} {}_{e_{p}h \neq g}^{K}(\vec{r}) \equiv \frac{\int_{E_{h+1}}^{E_{h}} dE' div_{j}(\vec{r}_{p}E') \int_{e_{g+1}p^{\alpha}}^{E} dE\sigma_{e}^{K}(E' \neq E) u^{K}(E'_{p}E)}{\int_{E_{h+1}}^{E_{h+1}} dE' div_{j}(\vec{r}_{p}E')}$$

(1.35b)

für alle h < g, für die $E_h \leq E_g / \alpha^K$

(1.35a)

sonst

$$\sum_{\substack{n \in \mathbb{Z}^{k} \\ 1^{\sigma}e, h \to g}} \sum_{\substack{k \in \mathbb{Z}^{k} \\ f \in \mathbb{Z}^{k} \\ 1^{\sigma}e, h \to g}} \sum_{\substack{k \in \mathbb{Z}^{k} \\ E_{h+1} \\ f \in \mathbb{Z}^{k} \\ E_{h+1} \\ f \in \mathbb{Z}^{k} \\ f \in$$

$$1\overset{\mathcal{K}}{\sigma}_{e,g \rightarrow g}^{K} = (\widetilde{\sigma_{e}})_{g}^{K} - \underset{h'>g}{S} 1\overset{\mathcal{K}}{\sigma}_{e,g \rightarrow h'}^{K}$$
(1.36)

(1.35c)

(1.37)

mit

$$\mu^{K}(E^{\bullet}) \equiv \frac{\int_{K_{E}^{\bullet}}^{E^{\bullet}} dE \sigma_{e}^{K}(E^{\bullet} \rightarrow E) \mu^{K}(E^{\bullet}, E)}{\int_{\alpha^{K} E^{\bullet}}^{E^{\bullet}} dE \sigma_{e}^{K}(E^{\bullet} \rightarrow E)}$$

unđ

$$(\widetilde{\sigma_{e}\mu})_{g}^{K}(\vec{r}) \equiv \frac{\int dE \sigma_{e}^{K}(E)\mu^{K}(E) divj(\vec{r},E)}{\int dE divj(\vec{r},E)}$$
(1.38)

Es werden nun zwei Näherungen durchgeführt:

a) keine anisotrope Streuung in den Nachbargruppen.

In diesem Falle wird $\int_{1}^{\infty} e_{h \to g}(\dot{r}) \equiv 0$ gesetzt für $h \neq g_{\bullet}$

Damit erhält man aus (1.36)

$$\int_{\sigma}^{\infty} \frac{K}{g \neq g} = \left(\widehat{\sigma_{e}\mu}\right)_{g}^{K}$$
(1.39)

Nimmt man ferner an, daß $\mu(E)$ keine Resonanzstruktur aufweist, dahn kann (1.39) geschrieben werden

$$\overset{\circ}{}_{1}^{K} \overset{\circ}{}_{g,g \rightarrow g} \overset{\circ}{}_{e,g} \overset{\kappa}{}_{g}^{K}$$

$$(1,40)$$

mit folgenden Definitionen

$$\hat{\sigma}_{e_{g}g}^{K}(\vec{r}) \equiv \frac{\int dE \ \sigma_{e}^{K}(E) \ divj(\vec{r},E)}{\int dE \ divj(\vec{r},E)}$$
(1.41)

$$\mu_{g}^{K} \equiv \frac{1}{\Delta E_{g}} \int_{(g)} \mu^{K}(E) dE$$
(1.42)

Damit wird

$$\sum_{1 \ge e,g \neq g}^{\infty} (\vec{r}) \stackrel{\simeq}{=} \underset{K}{\mathrm{S}} \mathbb{N}^{\mathrm{K}} \stackrel{\sim}{\sigma}_{e,g}^{\mathrm{K}} (\vec{r}) \mu_{g}^{\mathrm{K}}$$

und mit

$$\sum_{e,g}^{\infty} (\vec{r}) = N^{K} \tilde{\sigma}_{e,g}^{K} (\vec{r})$$

erhält man

$$\sum_{1 \leq e,g \neq g} (\vec{r}) \cong \underset{K}{\simeq} \sum_{e,g \neq g} (\vec{r})$$

(1, 43)

(1.45)

Gleichung (1.33) geht dann über in

$$\frac{1}{3}\Delta\phi_{g}(\vec{r}) + (\tilde{\Sigma}_{t,g}(\vec{r}) - \tilde{\Sigma}_{e,g \neq g}(\vec{r})) \operatorname{divj}_{g}(\vec{r}) = 0$$
(1.46)

Ein Vergleich mit (1.4) ergibt

$$D_{g}(\vec{r}) = \frac{1}{3(\sum_{t,g}(\vec{r}) - \sum_{t=g \neq g}(\vec{r}))}$$
(1.47)

Verwendet man noch die übliche Beziehung

$$D_{g}(\vec{r}) = \frac{1}{3\sum_{tr,g}(\vec{r})}$$
(1.48)

so erhält man für

$$\sum_{tr,g}(\vec{r}) = \sum_{t,g}'(\vec{r}) - \sum_{1\leq g \neq g}'(\vec{r})$$

Spaltet man $\sum_{t,g}^{v}$ in die Isotopenanteile auf und definiert einen mikroskopischen Querschnitt

$$\sigma_{t,g}^{K}(\vec{r}) \equiv \frac{\int dE \sigma_{t}^{K}(E) \, divj(\vec{r},E)}{\int dE \, divj(\vec{r},E)}$$
(1.50)
$$(E)$$

$$\sum_{t,g}(\vec{r}) = \sup_{K} \mathbb{N}^{K} \stackrel{\sim}{\sigma}_{t,g}^{K}(\vec{r})$$

(1.51)

(1.49)

so läßt sich mit Hilfe von (1.43), (1.44), (1.45) und (1.49) leicht ein mikroskopischer Transportquerschnitt definieren

$$\sigma_{\mathbf{tr},g}^{K}(\vec{\mathbf{r}}) = \tilde{\sigma}_{\mathbf{t},g}^{K}(\vec{\mathbf{r}}) - \tilde{\sigma}_{e,g}^{K}(\vec{\mathbf{r}})\mu_{g}^{K}$$
(1.53)

$$\sum_{\mathbf{tr},\mathbf{g}}(\vec{\mathbf{r}}) = \sum_{K} \mathbb{N}^{K} \sigma_{\mathbf{tr},\mathbf{g}}^{K}(\vec{\mathbf{r}})$$
(1.54)

Die Näherung a) ist erlaubt, falls die Gruppenbreite groß ist gegen den mittleren Energieverlust der Neutronen durch Streuung. Sie ist ferner exakt für isotrope Streuung in c-Systemen unter der Annahme eines Fermi-Spektrums.

b) mit starker Überstreuung

Gleichung (1.33) kann geschrieben werden als

$$\operatorname{divj}_{g}(\vec{r}) = -\frac{1}{3\left[\sum_{t,g}^{\mathcal{V}}(\vec{r}) - S \atop h \leq g} \sum_{1 \leq e,h \neq g}^{\mathcal{V}}(\vec{r}) \frac{\operatorname{divj}_{h}(\vec{r})}{\operatorname{divj}_{g}(\vec{r})}\right]^{\Delta\phi} g(\vec{r})$$
(1.55)

Man erhält dann einen Transportquerschnitt

$$\sum_{\text{tr},g}(\vec{r}) = \sum_{t,g}(\vec{r}) - \sum_{h \le g} \sum_{1 \le g,h \to g}(\vec{r}) \frac{\text{div}_{j_h}(\vec{r})}{\text{div}_{g}(\vec{r})}$$
(1.56)

Ebenso läßt sich ein mikroskopischer isotopenbezogener Transportquerschnitt definieren als

$$\sigma_{\mathbf{tr},g}^{\mathbf{K}}(\vec{\mathbf{r}}) = \overset{\sim}{\sigma}_{\mathbf{t},g}^{\mathbf{K}}(\vec{\mathbf{r}}) - \overset{\circ}{\underset{h \leq g}{\operatorname{s}}} \overset{\sim}{\overset{\circ}{\sigma}}_{e,h \rightarrow g}(\vec{\mathbf{r}}) \frac{\operatorname{divj}_{h}(\vec{\mathbf{r}})}{\operatorname{divj}_{\sigma}(\vec{\mathbf{r}})}$$
(1.57)

so daß (1.54) gilt
$$\tilde{\sigma}_{t,g}^{K}(\vec{r})$$
 ist definiert durch (1.50)

Der in (1.57) definierte Transportquerschnitt läßt sich nur berechnen, wenn Information über $\operatorname{divj}_{\sigma}(\vec{r})$ und $\operatorname{divj}_{h}(\vec{r})$ vorhanden ist.

Falls keine Resonanzstruktur vorhanden, d.h. die Frage des Wichtungsspektrums vernachlässigbar ist, kann 1[°] K auch dargestellt werden als

$$\int_{\sigma_{e_{\mathfrak{p}}h\to g}}^{\infty} (\vec{r}) \stackrel{\simeq}{=} \sigma_{e_{\mathfrak{p}}h\to g}^{K} (\vec{r}) \cdot \mu_{h\to g}^{K}$$
(1.58)

wobei $\mu_{h \rightarrow g}^{K}$ definiert ist als

$$\mu_{h \to g}^{K} \equiv \frac{1}{\Delta E_{h}} \int_{(h)}^{E} dE \sigma_{e}^{K}(E' \to E) \mu(E', E) \frac{\max(E_{g+1}, \alpha^{K} E')}{\sum_{max(E_{g+1}, \alpha^{K} E')}}$$

(1.59)

1.4 Die Ortsabhängigkeit der Gruppenkonstanten.

Wenn man davon ausgeht, daß in einem bestimmten Volumenbereich die Wirkungsquerschnitte ortsunabhängig sind, so erhält man trotzdem ortsabhängige Gruppenkonstanten. Die Ortsabhängigkeit hat ihre Ursache in der Ortsabhängigkeit der Wichtungsfunktionen. Diese Ortsabhängigkeit der Gruppenkonstanten kann in guter Näherung in folgender vereinfachter Form berücksichtigt werden:

Bei einem Mehrzonenreaktor liegt es nahe, innerhalb der einzelnen Zonen, Ortsunabhängigkeit der Gruppenkonstanten zu fordern. Diese Ortsunabhängigkeit läßt sich durch einen Separationsansatz der Wichtungsfunktion innerhalb einer Zone erreichen.

 $\phi(\vec{r}, E) \stackrel{\sim}{=} \phi(\vec{r}) \cdot \phi(E)$

(1.60)

In der physikalischen Anwendung nimmt man für $\phi(E)$ meist den über eine Zone gemittelten Fluß.

Alle flußgewichteten Gruppenkönstanten werden damit ortsunabhängig. Aus (1.60) folgt aber

$$div_j(\vec{r}, E) = g(\vec{r}) + \frac{1}{1}\phi(E)$$
 (1.61)

Damit werden auch alle Gruppenkonstanten, die mit divj (\vec{r},E) gewichtet sind, in eine Zone ortsunabhängig. Man erhält für die Wichtung anstelle von

$$\phi(\vec{r}, E) \longrightarrow \phi(i, E)$$
 (1.62)

 $\operatorname{divj}(\vec{r}, E) \longrightarrow \phi(E)$

.n.i 13. 4

Die Energieabhängigkeit des Flusses $\phi(\vec{r}, E)$, vor allem im Resonanzgebiet, wird in den nachfolgenden Kapiteln behandelt.

1.5 Zusammenfassung der benötigten mikroskopischen Gruppenkonstanten.

$$\sigma_{\mathbf{x},\mathbf{g}}^{K} \equiv \frac{\int d\mathbf{E} \ \sigma_{\mathbf{x}}^{K}(\mathbf{E})\phi(\mathbf{E})}{\int d\mathbf{E} \ \phi(\mathbf{E})}$$

x: f, Y, t, e, in, 2n.

(1.64)

(1.63)

1-18

$$\sigma_{x,h\neq g}^{K} = \int_{h\neq g}^{E} dE \cdot \phi(E^{\dagger}) \int_{e}^{E} dE \sigma_{x}^{K}(E^{\dagger} \rightarrow E)$$

$$\frac{E_{h+1}}{E_{h\neq g}} dE^{\dagger} \phi(E^{\dagger})$$

$$\frac{E_{h+1}}{E_{h+1}} dE^{\dagger} \phi(E^{\dagger})$$

$$X_g = \int_{(g)} dE X(E)$$

$$\widetilde{\sigma}_{x,g}^{K} \equiv \frac{\int_{(g)}^{dE} \sigma_{x}^{K}(E)}{\int_{(g)}^{dE} dE} \frac{1^{\phi(E)}}{1^{\phi(E)}}$$

x: t, e.

$$\frac{\int_{1}^{\infty} K}{\int_{e,h \to g}^{\infty} h \neq g} = \frac{\int_{1}^{\infty} dE' \int_{1}^{\phi(E')} \int_{0}^{\infty} dE \sigma_{e}^{K}(E' \to E) \mu(E', E)}{\int_{0}^{\infty} dE' \int_{1}^{\phi(E')} dE' \int_{0}^{\infty} dE' \int_{0}^{\infty}$$

$$\mu_{h \to g}^{K} = \frac{1}{\Delta E_{h}} \int_{(h)} dE' \frac{\int_{e} dE \sigma_{e}^{K}(E' \to E) \mu(E' \bullet E)}{\int_{e} dE \sigma_{e}^{K}(E' \to E)} \int_{e} dE \sigma_{e}^{K}(E' \to E)$$

(1.65)

(1,66)

(1.67)

(1.68)

(1.69)

$$\mu_{g}^{K} = \frac{1}{\Delta E_{g}} \int_{(g)} dE \ \mu^{K}(E)$$

Ferner wird der 1/v-Querschnitt benötigt

$$\left(\frac{1}{v}\right)_{g} = \frac{\int dE \frac{1}{v} F(E)}{\int dE F(E)}$$

$$\left(\frac{1}{v}\right)_{g} = \frac{\left(\frac{1}{v}\right)}{\int dE F(E)}$$

1-20

(1.71)

(1.70)

- 2. Berechnung der Gruppenkonstanten $\sigma_{x_{ig}}^{K}$ [Def. (1.63)].
- Es müssen drei Fälle unterschieden werden
- a) Aufgelöste, gemessene Resonanzen.
- b) Resonanzbereich, in dem nur statistische Aussägen gemacht werden können.
- c) Keine Resonanzen.

2.1 Der Bereich der aufgelösten, gemessenen Resonanzen.

Nach (1,63) ist der effektive Wirkungsquerschnitt

$$\sigma_{\mathbf{x},\mathbf{g}}^{K} \equiv \frac{\int dE \ \sigma_{\mathbf{x}}^{K}(E)\phi(E)}{\int dE\phi(E)}$$

Es wird die Narrow-Resonance Approximation zugrunde gelegt, d.h. die Stoßdichte $F(E) \equiv \phi(E)$. $\sum_{t}(E)$ wird als schwach veränderlich über eine Resonanz angenommen. Führt man die Stoßdichte ein, so erhält man

$$\sigma_{\mathbf{x},\mathbf{g}}^{K} \equiv \frac{\int_{\mathbf{g}}^{\mathbf{g}} d\mathbf{E} \frac{\sigma_{\mathbf{x}}^{K}(\mathbf{E})}{\sum_{\mathbf{t}}^{\mathbf{f}}(\mathbf{E})} \mathbf{F}(\mathbf{E})}{\int_{\mathbf{g}}^{\mathbf{g}} d\mathbf{E} \frac{1}{\sum_{\mathbf{t}}^{\mathbf{f}}(\mathbf{E})} \mathbf{F}(\mathbf{E})}$$

.

(2.1)

(2.2)

Wechselwirkungen zwischen Resonanzen verschiedener Isotope werden vernachlässigt, der totale Querschnitt aller Isotope K' ≠ K wird als konstanter Untergrund

angenommen. Definiert man

$$\sigma_{o} = \frac{1}{\underline{N}^{K}} \underset{K' \neq K}{S} \frac{\underline{N}^{K'}}{\underline{E}_{g} - \underline{E}_{g} + 1} \int_{(g)}^{\sigma_{t}} \sigma_{t}^{K'}(E) dE \qquad (Ausnahmen siehe Anhang II) \qquad (2.3)$$

so läßt sich (2.2) umformen in

$$\sigma_{\mathbf{x}_{9}g}^{K}(\sigma_{0}) \equiv \frac{\int dE}{\int dE} \frac{\sigma_{\mathbf{x}}^{K}(E)}{\sigma_{\mathbf{t}}^{K}(E) + \sigma_{0}} F(E)$$
$$\int dE \frac{1}{\sigma_{\mathbf{t}}^{K}(E) + \sigma_{0}} F(E)$$
$$(g)$$

Man definiert Gruppenkonstanten bei unendlicher Verdünnung

$$\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K},\mathbf{g}^{\infty}} = \lim_{\sigma_{0} \to \infty} \sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\sigma_{0}) = \frac{\left(g\right)}{\left(g\right)}$$
(2.5)

Bei schweren Isotopen besteht im allgemeinen eine starke Temperaturabhängigkeit $\sigma_{x,g}^{K}(\sigma_{0},T)$. Die Definition in (2.5) wird dann verallgemeinert zu

$$\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K},\mathbf{g},\mathbf{m}} = \lim_{\sigma \to \infty} \sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}} (\sigma_{\sigma},\mathbf{T})_{\mathbf{T}=0}$$
(2.6)

Ein Maß für die energetische Selbstabschirmung ist dann gegeben durch

$$\mathbf{f}_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\sigma_{\mathbf{0}},\mathbf{T}) \equiv \frac{\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\sigma_{\mathbf{0}},\mathbf{T})}{\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K},\mathbf{0}}}$$
(2.7)

(2.4)

Man bezeichnet diesen Quotienten als den energetischen Selbstabschirmfaktor

$$f_{x_{s}g}^{K}(\sigma_{o},T)$$
 ist im allgemeinen ≤ 1 .

 $f_{x,g}^{K}(\sigma = \infty) = 1$, falls keine Temperaturabhängigkeit besteht. Anderenfalls

$$\mathbf{f}_{\mathbf{x}_{\mathfrak{g}}\mathbf{g}}^{\mathbf{K}}(\sigma_{\mathsf{o}}=\sigma_{\mathfrak{F}}\mathbf{T}) = \frac{\lim_{\substack{\sigma_{\mathsf{o}}\to\infty\\\mathbf{o}}} \sigma_{\mathsf{o}}\to\infty}{\lim_{\substack{\sigma_{\mathsf{o}}\neq\infty\\\sigma_{\mathsf{o}}\to\infty}} \sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\sigma_{\mathsf{o}},\mathbf{T})}\mathbf{T}=0}$$

Dieser Quotient muß nicht notwendig eins sein, wird aber in allen Fällen, in denen die Gruppenbreite sehr groß ist gegen die Resonanzbreiten und genügend viel Resonanzen innerhalb der Gruppe liegen, praktisch den Wert eins annehmen. Falls keine Resonanzen vorhanden sind, wird $f_{x,g}^{K}(\sigma_{o},T)$ ebenfalls eins. Ein Wert >1 kann auftreten, wenn stark asymmetrische Resonanzen vorhanden sind oder eine breite Resonanz an einer Gruppengrenze den Hauptanteil der Selbstabschirmung in der Gruppe liefert. Die energetischen Selbstabschirmfaktoren können auf zwei Arten berechnet werden:

(2.8)

- α) Aus gemessenen Resonanzkurven durch numerische Integration. Dies ist nur möglich, wenn die Resonanzkurven gut aufgelöst sind und keine Temperaturabhängigkeit berücksichtigt werden muß.
- β) Aus Resonanzparameteren. σ^{K,∞}_{x,g} kann sowohl von Meßkurven als auch von Resonanzparametern berechnet werden. Man wird im allgemeinen eine Berechnung von Meßkurven vorziehen, um die meist größeren Unsicherheiten in den Resonanzparametern zu vermeiden.

2.2 Die Berechnung der energetischen Selbstabschirmfaktoren von Resonanzparametern.

$$f_{x,g}^{K}(\sigma_{0},T) = \frac{\left(\begin{array}{c}g\right)}{\int dE \frac{\sigma_{x}^{K}(E,T)}{\sigma_{t}^{K}(E,T)+\sigma_{0}}} F(E) & \int dE F(E) \\ \int dE \frac{f(E,T)+\sigma_{0}}{\int dE \frac{1}{\sigma_{t}^{K}(E,T)+\sigma_{0}}} F(E) & \int \int dE \sigma_{x}^{K}(E,T=0)F(E) \end{array}$$

$$(2.9)$$

 $\sigma_x^K(E,T)$ bzw. $\sigma_t^K(E,T)$ setzt sich aus den Beiträgen aller Resonanzen zusammen. Sei R die Anzahl der maßgeblichen Resonanzen in der Umgebung von E, so erhält man

$$\sigma_{\mathbf{x}}^{\mathbf{K}}(\mathbf{E},\mathbf{T}) = \sum_{\mathbf{r}=1}^{\mathbf{R}} \sigma_{\mathbf{x}}^{\mathbf{K}}(\mathbf{E},\mathbf{E}_{\mathbf{r}},\mathbf{T})$$
(2.10)

(2.11)

mit E = Resonanzenergie

$$\sigma_{\mathbf{x}}^{\mathbf{K}}(\mathbf{E}_{\mathbf{y}}\mathbf{E}_{\mathbf{y}},\mathbf{T}) = \sigma_{\mathbf{x}} \cdot \psi_{\mathbf{r}}(\boldsymbol{\theta}_{\mathbf{y}}\mathbf{x})$$

für $x = f_{1}\gamma$

$$\sigma_{t}^{K}(E_{s}E_{r},T) = \sigma_{p} + \sigma_{oc} \left\{ \psi_{r}(\theta,x) \cos 2\delta_{t} + \chi_{r}(\theta,x) \sin 2\delta_{t} \right\}$$
(2.12)

$$\sigma_{n}^{K} = \sigma_{t}^{K} - \sigma_{\gamma}^{K} - \sigma_{f}^{K}$$
(2.13)

2-4

$$r^{\sigma}_{ox} = 4\pi \lambda^{2} (E_{r}) g \frac{\Gamma_{n}(E_{r}) \cdot \Gamma_{x}(E_{r})}{\Gamma^{2}(E_{r})} \cdot \left(\frac{E}{E_{r}}\right)^{\ell-1/2}$$
(2.14)

$$r^{\sigma}_{oc} = 4\pi \lambda^{2} (E_{r}) g \frac{\Gamma_{n}(E_{r})}{\Gamma(E_{r})} \cdot \left(\frac{E}{E_{r}}\right)^{\ell-1/2}$$
(2.15)

$$\psi_{\mathbf{r}}(\theta,\mathbf{x}) = \frac{\theta}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{-\frac{\theta^2}{4}(\mathbf{x}-\mathbf{y})^2}{1+\mathbf{y}^2} d\mathbf{y}$$
(2.16)

$$x_{r}(\theta, x) = \frac{\theta}{2 \sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{-\frac{\theta^{2}}{4} (x-y)^{2}}{1+y^{2}} dy$$
(2.17)

mit

$$\theta = \frac{\Gamma(\underline{E}_{r})}{\Delta} \qquad x = \frac{2(\underline{E}-\underline{E}_{r})}{\Gamma(\underline{E}_{r})}, \qquad y = \frac{2(\underline{E}'-\underline{E}_{r})}{\Gamma(\underline{E}_{r})} \qquad (2.18)$$

$$\Delta = \sqrt{4} \text{KTE}_{r} A^{-1} = \text{Dopplerbreite}$$

$$\Gamma = \text{totale Halbwertbreite}$$

$$g = \frac{2\underline{I}+1}{2(2\underline{I}+1)} \quad \underline{I} = \text{Gesantspin}, \quad \underline{i} = \text{Kernspin}$$

$$\delta_{g} = \frac{R'}{\lambda} - \arctan \frac{R'}{\lambda} \cdot \ell \qquad \text{für } \ell = 0, 1$$

$$R' = \text{effektiver Kernradius}$$

$$\lambda = \text{reduzierte Neutronenwellenlänge}$$

$$\Gamma_{n} = \text{Neutronenhalbwertsbreite}$$

$$\Gamma_{x} = \text{Partialhalbwertbreiten für Spaltung und Einfang}$$

$$\sigma_{p} = \text{Potentialquerschnitt}$$

Für $T \rightarrow 0$:

$$\psi_{\mathbf{r}} = \frac{1}{1+\mathbf{x}^2}$$

$$x_r = \frac{x}{1+x^2}$$
(2.20)

Für negative Resonanzenergien werden (2.14) und (2.15) wie folgt modifiziert:

$$r^{\sigma}_{ox} = 4\pi \Lambda_{o}^{2} g_{j} \frac{\Gamma_{n}(E_{r})\Gamma_{x}(E_{r})}{\Gamma^{2}(E_{r})} \cdot E^{\ell-1/2}$$
 (2.21)

$$\mathbf{r}^{\sigma}\mathbf{oc} = 4\pi\Lambda_{o}^{2} \quad \mathbf{g}_{j} \frac{\Gamma_{n}(\mathbf{E}_{r})}{\Gamma(\mathbf{E}_{r})} \cdot \mathbf{E}^{\ell-1/2}$$
(2.22)

mit $\Lambda_0 = \hat{\pi}(1eV)$

Die Integration erfolgt numerisch.

2-6

(2.19)

2.3 Die Berechnung der energetischen Selbstabschirmfaktoren aus statistischen Größer

Als Ausgengsdaten werden gemittelte Resonanzparameter und deren Verteilungsfunktioner verwendet \vec{D} , $\vec{\Gamma}_{\gamma}$, $\vec{\Gamma}_{\gamma}$, $\vec{\Gamma}_{n}$. Diese Mittelwerte sind Funktionen der Energie. Als Verteilungsfunktionen werden χ^2 -Verteilungen von verschiedenen Freiheitsgraden benutzt.

D eine χ^2 -Verteilung vom Grade 10, Γ_{f} , Γ_{n} χ^2 -Verteilungen verschiedenen Grades, Γ_{γ} wird konstant angenommen.

D ist der mittlere Resonanzabstand. Die oben genannten Parameter sind serienabhängig Der effektive Wirkungsquerschnitt (2.2) wird umgeformt in

 ΔE_{j} ist eine Untergruppe der Gruppe g und soll so klein sein, daß die Stoßdichte $F(E) = F_{j} = const$ in ΔE_{j} .

Führt man ein

$$\phi_{j} = F_{j} \cdot \frac{1}{\Delta E_{j}} \int_{\Delta E_{j}} dE \frac{1}{\sigma_{t}^{K}(E) \star \sigma_{o,j}},$$

so erhält man

$$\sigma_{\mathbf{x},\mathbf{g}}^{K} = \frac{\sum_{j=1}^{S} \phi_{j}}{\sum_{j=1}^{S} \frac{\Delta E_{j}}{\left(\begin{array}{c} \Delta E_{j} & \sigma_{\mathbf{x}}^{K}(E) \\ \Delta E_{j} & \sigma_{\mathbf{t}}^{K}(E) + \sigma_{\mathbf{0},j} \end{array} \right)}{\sum_{j=1}^{S} \phi_{j} & \Delta E_{j}} \Delta E_{j}}$$

(2.26)

(2.25)

(2.24)

2-7
2-8

Der Ausdruck in der geschwungenen Klammer repräsentiert den effektiven Wirkungsquerschnitt an der Stelle E, im Intervall ΔE_{i} .

$$\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}} = \frac{\underset{\mathbf{j}}{\overset{\mathbf{\delta}}{\mathbf{j}}} \sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\mathbf{E}_{\mathbf{j}}) \Delta \mathbf{E}_{\mathbf{j}}}{\underset{\mathbf{j}}{\overset{\mathbf{\delta}}{\mathbf{j}}} \Delta \mathbf{E}_{\mathbf{j}}}$$
(2.27)

Es werden noch folgende Vereinfächungen gemächt

 $\sigma_{o,j}$ wird ersetzt durch $\sigma_{o,g}$, wobei $\sigma_{o,g}$ der mittlere Untergrund der gesamten Gruppe g darstellt. Unter dieser Annahme kann dann auch

$$\phi_j \stackrel{\sim}{=} F_j$$
 gesetzt werden, da

 $\frac{1}{\Delta E_{j}} \int dE \frac{1}{\sigma_{t}^{K}(E) + \sigma_{0,g}}$ nahezu konstant über eine Gruppe ist.

$$\sigma_{\mathbf{x}_{g}g}^{K} = \frac{\underset{j}{\overset{S}{\overset{\Delta E}{\overset{}}}}_{j} F_{j} \sigma_{\mathbf{x}_{g}g}^{K}(E_{j})}{\underset{j}{\overset{S}{\overset{\Delta E}{\overset{}}}}_{j} F_{j}}$$

$$\sigma_{\mathbf{x},g}^{\mathbf{K},\infty} = \frac{\underset{j}{\overset{\mathrm{S}}{\overset{\mathrm{F}}{_{\mathbf{j}}}} \sigma_{\mathbf{x},g}^{\mathbf{K},\infty}(\mathbf{E}_{j})\Delta \mathbf{E}_{j}}{\underset{j}{\overset{\mathrm{S}}{\overset{\mathrm{F}}{_{\mathbf{j}}}} \Delta \mathbf{E}_{j}}}$$

$$f_{x_{9}g}^{K} = \frac{\sigma_{x_{9}g}^{K}}{\sigma_{x_{9}g}^{K_{9}\infty}}$$

(2.28a)

(2.28b)

$$\sigma_{\mathbf{x},\mathbf{g}}^{K}(\mathbf{E}_{j}) = \frac{\int_{\Delta \mathbf{E}_{j}}^{d\mathbf{E}} \frac{\sigma_{\mathbf{x}}^{K}(\mathbf{E})}{\sigma_{\mathbf{t}}^{K}(\mathbf{E}) + \sigma_{\mathbf{0},\mathbf{g}}}}{\int_{\Delta \mathbf{E}_{j}}^{\Delta \mathbf{E}_{j}} \frac{d\mathbf{E}}{\sigma_{\mathbf{t}}^{K}(\mathbf{E}) + \sigma_{\mathbf{0},\mathbf{g}}}}$$

Der effektive Wirkungsquerschnitt eines Isotops setzt sich aus den Beiträgen der einzelnen Resonanzserien s zusammen

$$\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K}}(\mathbf{E}_{\mathbf{j}}) = \mathbf{S} \quad \mathbf{s} \\ \mathbf{s} \quad \mathbf{s} \quad$$

mit

$$s_{\sigma_{x,g}^{K}(E_{j})} = \frac{\int dE \frac{s_{\sigma_{x}^{K}(E)}}{s_{\sigma_{c}^{K}(E) + s_{\sigma_{c}^{K}(E) + \sigma_{\sigma_{g}^{H}\sigma_{p}^{H}}}}{\int dE \frac{\Delta E_{j}}{s_{\sigma_{c}^{K}(E) + s_{\sigma_{c}^{H}\sigma_{p}^{H}}}} \int dE \frac{1}{s_{\sigma_{c}^{K}(E) + s_{\sigma_{c}^{H}\sigma_{p}^{H}}}}$$

 $\overset{s}{\sigma}_{\mathbf{c}}^{K}$ sind die Resonanzanteile des totalen Querschnitts

$$\sigma_{t}^{K} = s \sigma_{c}^{K} + \sigma_{p}$$
(2.32)

(In weiteren sollen die Isotopenindizes weggelassen werden und die abkürzende Schreibweise $\frac{1}{\Delta E_j} \int_{\Delta E_j} dE g(E) = \langle g(E) \rangle$ verwendet werden.)

(2.29)

(2.31)

(2.31) kann weiter umgeformt werden.

Zuerst der Zähler:

Man approximiert die einzelnen Summanden durch

$$\left\langle \frac{s_{\sigma_{x}(E)}}{\sigma_{p}^{+}\sigma_{o,g}^{+}s_{\sigma_{c}(E)+}s_{s'\neq s}s_{\sigma_{c}(E)}} - \frac{s_{\sigma_{x}(E)}^{s}s_{s'\neq s}s_{\sigma_{c}(E)+}s_{\sigma_{c}(E)+}s_{\sigma_{c}(E)}}{\left\{\sigma_{p}^{+}\sigma_{o,g}^{+}s_{\sigma_{c}(E)+}s_{s'\neq s}s_{\sigma_{c}(E)}s_{\sigma_{c}(E)}\right\}^{2}} \right\rangle$$
(2.34)

Diese Entwicklung ist nur erlaubt, wenn im gesamten Interval ΔE_j

$$\frac{s\left(s_{\sigma_{c}}^{\prime}(E)-\langle s_{\sigma_{c}}^{\prime}(E)\rangle\right)}{s_{p}^{\prime}+\sigma_{o,g}^{\prime}+s_{\sigma_{c}}^{\prime}(E)+s_{\sigma_{c}}^{\prime}(E)} <<1$$
(2.35)

Allerdings läßt sich diese Bedingung abschwächen.Forderung (2.35) muß nicht im gesamten Intervall erfüllt sein. Es genügt, wenn sie für solche Energien erfüllt ist, für die $\int_{r_x}^{s_{\sigma_x}}(E)$ wesentlich von Null verschieden, d.h. in der Umgebung jeder Resonanz der Serie s. Die Bedingung (2.35) wurde von R. Froelich [2]

$$\frac{\sum_{\substack{r \in \mathcal{S}^{s} \\ p \neq \sigma_{o,g} \neq s \\ s' \neq s}}^{s \sigma_{c}(E)} \cdot \left\{ s \left(s' \sigma_{c}(E) - \left\langle s' \sigma_{c}(E) \right\rangle \right\}^{2} \right\} \cdot \left\{ s' \sigma_{c}(E) - \left\langle s' \sigma_{c}(E) \right\rangle \right\}$$

und wird, da der zweite Faktor identisch verschwindet, Mull. Die analoge Entwicklung kann auch für den Henner von (2.31) durchgeführt werden. Somit erhält man

$${}^{s}\sigma_{x,g}(E_{j}) \stackrel{\sim}{=} \frac{\underset{r}{\overset{s}{f}} \left\langle \frac{\underset{s}{\overset{s}{\sigma}_{c}(E)}}{\underset{s}{\overset{s}{\neq}s} \left\langle \overset{s}{\overset{s}{\sigma}_{c}(E)} \right\rangle + \sigma_{o,g} + \sigma_{p}}{\left\langle \frac{1}{\underset{s}{\overset{s}{\neq}s} \left\langle \overset{s}{\overset{s}{\sigma}_{c}(E)} \right\rangle + \sigma_{o,g} + \sigma_{p}} \right\rangle}$$

Es wird zuerst der Zähler von (2.36) berechnet, und dabei werden folgende Resonanzformeln verwendet:

$$s_{\sigma} = s_{\sigma} * s_{\psi} \qquad x = f_{*}\gamma \qquad (2.37)$$

(2.36)

(2.39b)

$$\sum_{r=1}^{s} \sum_{r=1}^{s} \sum_{r=1}^{s} \psi, \qquad (2.38)$$

Der asymmetrische Anteil im totalen Resonanzquerschnitt wird vernachlässigt

$$s_{r}\sigma_{ox} = 4\pi\lambda^{2}g \frac{s_{r}n r_{x}}{(s_{r}r)^{2}}$$

$$(2.39a)$$

$$s_{r}\sigma_{cc} = 4\pi\lambda^{2}g \frac{s_{r}n}{s_{r}}\cos 2\delta_{k}$$

$$(2.39b)$$

Damit erhält man

$$S_{r} \left(\frac{s_{\sigma_{x}}(E)}{s_{\sigma_{c}}(E) + s_{\sigma_{c}}(E) + s_{\sigma_{s}}(E)} \right) = S_{r} \left(\frac{s_{\sigma_{s}} s_{\psi}}{s_{\sigma_{s}} s_{\tau} + s_{\sigma_{s}} s_{\psi}} \right)$$
(2.40)
$$S_{r} \left(\frac{s_{\sigma_{s}}(E) + s_{\sigma_{s}}(E)}{s_{\sigma_{s}} + s_{\sigma_{s}} s_{\tau} + s_{\sigma_{s}} + s$$

mit ^s
$$\sigma_{p,eff} = \sigma_{o,g} + \sigma_{p} + S_{s'\neq s} \langle s'\sigma_{c}(E) \rangle$$

Es wird folgende Annahme gemacht:

$${}^{s}\sigma_{p,eff} + {}^{s}\sigma_{r}\sigma_{r} {}^{\psi} >> {}^{s}\sigma_{r} {}^{s}\sigma_{r} {}^{\psi}$$
(2.41a)

in dem Energiebereich, in dem die Resonanz r wesentlich von Mull verschieden ist.

Die physikalische Begründung von Annahme (2,41a) ist folgende: Im Falle gut aufgelöster Resonanzen sind in der Umgebung der r-ten Besonanz die Beiträge der Nachbarresonanzen wesentlich kleiner als der Beitrag der r-ten Resonanz, d.h.

$$\int_{r_{oc}}^{s} \int_{r_{f}}^{s} \frac{s}{r_{f}} \int_{r_{f}}^{s} \int$$

Mit steigender Energie nimmt die Überlappung zu, so daß (2.41 b) abgeschwächt werden muß, Glücklicherweise nimmt aber die Höhe der Resonanzen ab, so daß für realistische Werte von ${}^{s}\sigma_{p.eff}$ (2.41a) erhalten bleibt. Es läßt sich dann folgende Entwicklung durchführen

$$S_{r} \frac{s_{\sigma}}{s_{\sigma}} \frac{s_{\psi}}{r_{oc}} - S_{r} \frac{s_{\sigma}}{r_{oc}} \frac{s_{\tau}}{r_{oc}} \frac{s_{\psi}}{r_{oc}} \frac{s_{\psi}}{r_{oc}} \frac{s_{\psi}}{r_{v}} \frac{s_{\psi}}{r_{v}}$$
(2.42)
$$S_{r} \frac{s_{\sigma}}{r_{oc}} \frac{s_{\tau}}{r_{oc}} \frac{s_{\tau}}{r_{$$

Es wird noch folgende Abkürzung eingeführt

$$\iint_{\chi(\Gamma_n,\Gamma_f)} \mathbb{F}_n(\Gamma_n) \mathbb{F}_f(\Gamma_f) d\Gamma_n d\Gamma_f = \overline{\chi(\Gamma_n,\Gamma_f)} \Gamma_n \mathbb{F}_f$$
(2.43)

 $\mathbb{F}_{n}(\Gamma_{n}), \mathbb{F}_{f}(\Gamma_{f})$ sind die Verteilungsfunktionen von Γ_{n} , bzw. Γ_{f} .

1. Summand von (2.42)

 $\frac{\Delta E}{E_D} = n_s = \text{mittlere Anzahl Resonanzen der Serie s in } \Delta E.$

Die Summe über die einzelnen Resonanzanteile wird ersetzt durch den statistischen Mittelwert multipliziert mit der mittleren Anzahl Resonanzen im betrachteten Energieintervall.

$$\frac{\Delta E}{s_{D}} \xrightarrow{s_{\sigma_{oc}}} \left\langle \frac{s_{\psi}}{s_{\beta} + s_{\psi}} \right\rangle^{s_{\Gamma_{n}}} f$$

mit ${}^{S}\beta = \frac{{}^{S}\sigma}{{}^{D}s}eff}{{}^{S}\sigma}oc$

$$\left\langle \frac{s_{\psi}}{s_{\beta} + s_{\psi}} \right\rangle \stackrel{\sim}{=} \frac{2}{\Delta x} J(s_{\theta}, s_{\beta})$$

(2.44)

da ^s ψ außerhalb des Intervalls ΔE praktisch Null ist, und die Integration über das Intervall ΔE ersetzt werden kann, durch eine Integration von $-\infty$ bis $+\infty$

$$J({}^{s}\theta,{}^{s}\beta) \equiv \int \frac{\psi({}^{s}\theta,x)}{{}^{s}\beta + \psi({}^{s}\theta,x)} dx$$
(2.45)

 ${}^{S}\theta = \frac{{}^{S}\Gamma}{\Delta}$, $\frac{2}{\Delta x} = \frac{{}^{S}\Gamma}{\Delta E}$ (2.46)

$$\Delta = \sqrt{4 \text{KTE } A^{-1}} = \text{Dopplerbreite}$$

Damit geht (2,44) über in

$$\frac{s_{\Gamma}}{s_{D}} \frac{s_{\sigma}}{s_{\sigma}} \cdot J(s_{\theta}, s_{\beta})$$

Setzt man noch (2.39a) und (2.39b) ein, so erhält man

$$\frac{\sum_{s_{\Gamma_{x}} J(s_{\theta}, s_{\beta})}^{s_{\Gamma_{n}}, s_{\Gamma_{f}}}}{\sum_{s_{D} \cdot \cos 2\delta_{g}}}$$
(2.48)

2. Summand von (2.42)

Dieser verschwindet für vollkommen getrennte Resonanzen und liefert nur für starke Überlappung einen merklichen Beitrag. Da starke Überlappung bei höheren Energien auftritt, in einem Energeibereich also, in dem die Resonanzspitzen nur noch wenig über den konstanten Untergrund herausragen, gilt

$$s_{\sigma} \approx s_{p,eff} >> s_{r} s_{\sigma} s_{r} \psi$$
(2.49)

oder

$$\sigma_{p,eff} \stackrel{\sim}{=} <\sigma_{t}$$

(2.50)

(2.47)

Ebenso kann man dann näherungsweise setzen

$$\binom{s_{\sigma}}{p,\text{eff}} \div \frac{c_{\sigma}}{r} \frac{s_{\psi}}{r} \binom{2}{=} < \frac{2}{\tau} >^{2}$$
(2.51)

Führt man für $s \atop r \psi$ folgende Näherung ein

$${}_{r}^{s}\psi(E_{r}^{-}E) = \frac{\sqrt{\pi}}{2} \frac{{}_{r}^{r}}{\Delta} e^{-\frac{\left({}_{r}^{s}E-E\right)^{2}}{\Delta^{2}}}$$
(2.53)

und führt die Integration über die Energie durch, so erhält man (es wird über den gesamten Energiebereich integriert, da $\psi(E_r-E)$ außerhalb ΔE verschwindend klein).

$$\frac{1}{\Delta E} \underset{\mathbf{r}}{\overset{s}{}} \underset{\mathbf{r}' \neq \mathbf{r}}{\overset{s}{}} \frac{\overset{s}{r} \overset{s}{} \overset{\sigma}{} \underset{\mathbf{r}'}{\overset{\sigma}{}} \overset{\sigma}{} \overset{s}{} \overset{r}{} \overset{s}{} \overset{s}{} \overset{r}{} \overset{s}{} \overset{s}{}$$

Ersetzt man die Summation über die einzelnen Resonanzen durch den Mittelwert multipliziert mit der mittleren Anzahl Resonanzen $\frac{\Delta E}{s_D}$ so erhält man

$$\frac{\pi^{3/2} 2^{-5/2}}{\Delta^{s} D \langle \sigma_{\downarrow} \rangle^{2}} \cdot \frac{s}{r^{\sigma} ox} \cdot \frac{s}{r^{,\sigma} oc} \cdot \frac{s}{r^{,\Gamma} r^{,\Gamma} r^{,\Gamma}$$

und da r'≠r, ist das gleich

$$\frac{\pi^{3/2} 2^{-5/2}}{\Delta \overline{D} < \sigma_{t}^{2}} \xrightarrow{s_{\sigma_{ox}}} r_{n}^{s_{\Gamma}} f \xrightarrow{s_{\sigma_{oc}}} r_{n}^{s_{\Gamma}} f \xrightarrow{s_{\sigma_{oc}}} r_{n}^{s_{\Gamma}} f = \frac{D_{r',r}^{2}}{2\Delta^{2}}$$

(2.56)

Für den Ausdruck $\varepsilon = S = \frac{D_{r',r}^2}{2\Delta^2}$ gibt R. Froelich [2] an

$$\varepsilon = 2 \int_{0}^{\infty} e^{-\frac{D^2}{2\Delta^2}} \Omega(D) dD$$
 (2.57)

wobei

$$\Omega(D)dD = \frac{S}{n=1} P_n(D)dD$$
(2.58)

P_n(D)dD ist die Wahrscheinlichkeit, daß im Abstand D von einer bestimmten Resonanz im Intervall dD die n-te Resonanz liegt.

$$P_{n}(D)dD = \frac{1}{|D|r(n\frac{v}{2})} \left(\frac{v|D|}{2\overline{D}}\right)^{\frac{v}{2}} n e^{-\frac{v|D|}{2\overline{D}}} dD$$
(2.59)

 $\Gamma(n * \frac{\nu}{2})$ ist hier die Gammafunktion, $\nu = 10$.

Somit erhält man für den 2. Summanden von (2.42)

$$\frac{1}{s_{D\Delta}} \cdot \frac{\pi^{3/2}}{2^{5/2}} \xrightarrow{\frac{s_{\Gamma_n} s_{\Gamma_f}}{s_{\sigma_{ox}} s_{\Gamma}}} \frac{s_{\Gamma_n} s_{\Gamma_f}}{s_{\sigma_{oc}} s_{\Gamma}} \cdot \varepsilon \qquad (2.60)$$

Berechnung der mittleren Querschnitte:

$${}^{s} < \sigma_{x} > = \frac{1}{\Delta E} \int_{\Delta E} \sum_{r} \sum_{r} \sigma_{ox} \sum_{r}^{s} \psi \, dE \stackrel{\simeq}{=} \int_{-\infty}^{\infty} \sum_{r} \sum_{r} \sigma_{ox} \sum_{r}^{s} \psi(E_{r}-E) \, dE = \frac{1}{\Delta E} \sum_{r} \sum_{r}^{s} \sigma_{ox} \cdot \frac{r}{2} \cdot \pi$$

$$< \sigma_{x} > = \frac{\pi}{2^{s} D} \sum_{\sigma_{ox}} \sum_{r} \sum_{r}^{s} \sigma_{ox} \sum_{r}^{s} f = \frac{2\pi^{2}}{s_{D}} \chi^{2} g \left(\frac{\sum_{r} \sum_{r}^{s} \Gamma_{n}}{s_{r}} \right)^{s} f \qquad (2.61)$$

$${}^{\mathbf{s}}\sigma_{\mathbf{oc}} = \frac{\pi}{2^{\mathbf{s}}_{\mathbf{D}}} \quad {}^{\mathbf{s}}\Gamma_{\mathbf{oc}} \quad {}^{\mathbf{s}}\Gamma = \frac{2\pi^2}{s_{\mathbf{D}}} \quad {}^{\mathbf{s}}\Gamma_{\mathbf{n}} \cos 2\delta_{\mathbf{k}}$$
(2.62)

Faßt man (2.60) und (2.48) zusammen und setzt noch (2.61) und (2.62) ein, so erhält man für den Zähler von (2.31) bzw. (2.36)

$$\left\langle \frac{s_{\sigma_{x}}}{\sigma_{t}} \right\rangle = \frac{\frac{s_{\Gamma_{x}} J(s_{\theta}, s_{\beta})}{s_{D} \cdot \cos 2\delta_{g}}}{\frac{s_{D} \cdot \cos 2\delta_{g}}{s_{D} \cdot \cos 2\delta_{g}}} - \frac{\frac{s_{D} \cdot s_{\sigma_{x}}}{s_{D} \cdot s_{\sigma_{x}}}}{\Delta \sqrt{2\pi} \cdot s_{\sigma_{t}}^{2}} \cdot \varepsilon$$
(2.63)

Behandlung des Nenners von (2:36):

$$\left\langle \frac{1}{s_{\sigma_{c}}^{(E)} + s_{\sigma_{c}}^{s_{\sigma_{c}}^{(E)}} + \sigma_{o,g} + \sigma_{p}} \right\rangle =$$
(2.64)

(2.65)

$$= \frac{1}{s_{\sigma_{p,eff}}} \left(1 - \left\langle \frac{s_{\sigma_{c}}}{\sigma_{p,eff} + s_{\sigma_{c}}} \right\rangle \right)$$
(2.66)

Der Ausdruck in den eckigen Klammern läßt sich analog zu (2.63) berechnen. Man erhält dann

$$\frac{1}{s_{\sigma_{p,eff}}} \left\{ 1 - \frac{\overline{s_{\Gamma J}(s_{\theta}, s_{\beta})}}{\overline{s_{D}}} + \frac{\overline{s_{D}}}{\sqrt{2\pi} \cdot \Delta} \frac{\langle s_{\sigma_{c}} \rangle^{2}}{\langle \sigma_{t} \rangle^{2}} \cdot \varepsilon \right\}$$
(2.67)

Zusammenfassung:

$$s_{\sigma_{x,g}^{K}(E_{j})} = s_{\sigma_{p,eff}} \frac{\frac{s_{r_{x}^{K} J(s_{\theta}^{K}, s_{\beta}^{K})}{s_{p}^{K} cos 2\delta_{k}} - \frac{s_{p}^{K} \langle s_{\sigma_{x}^{K}} \rangle \langle s_{\sigma_{c}^{K}} \rangle}{\Delta \sqrt{2\pi} \langle \sigma_{c} \rangle^{2}} \epsilon$$

$$\frac{s_{p}^{K} s_{p}^{K} s_{r}^{K} s_{r}^{K} s_{r}^{K} \delta_{\sigma_{c}^{K}} \rangle}{1 - \frac{s_{p}^{K} J(s_{\theta}^{K}, s_{\beta}^{K})}{s_{p}^{K}} + \frac{s_{p}^{K} \langle s_{\sigma_{c}^{K}} \rangle^{2}}{\Delta \sqrt{2\pi} \langle \sigma_{c} \rangle^{2}} \epsilon$$

$$(2.68)$$

 $x = f_{,\gamma}$

Formel (2.68) gilt auch für elastische Streuung, falls

$$\langle {}^{s}\sigma_{x}^{K} \rangle = \langle {}^{s}\sigma_{c}^{K} \rangle - \langle {}^{s}\sigma_{f}^{K} \rangle - \langle {}^{s}\sigma_{\gamma}^{K} \rangle$$
 (2.69)

und

$$s_{r_{\mathbf{x}}^{K}} s_{\mathbf{y}}^{K} s_{\mathbf{y}}^{K}$$

2-18

 Γ_{f}, Γ_{n} Die exakte Berechnung der Ausdrücke $\overline{\Gamma_{x}}$ J erfolgt durch numerische Integration, für einen Fall kann aber eine gute Näherung angegeben werden. Der in (2,42) gegebene Ausdruck

kann für den Fall

durch eine einfache Entwicklung approximiert werden.

Verwendet man die in (2.53) angegebene Näherung, so erhält man

$$\frac{1}{s_{\sigma}} \frac{1}{p_{eff}} \langle s_{\sigma_{x}} \rangle - \frac{1}{s_{\sigma}} \frac{1}{s_{\sigma}} \frac{1}{p_{eff}} \frac{1}{r} \left(s_{\sigma} \frac{s_{r}}{r} \right) \cdot \left(s_{r} \frac{s_{r}}{r} \frac{s_{r}}{r} \right) \cdot \frac{\pi^{3/2}}{\Delta E \cdot 2^{5/2}}$$

$$= \frac{1}{s_{\sigma}} \frac{1}{s_{\sigma}} \langle s_{\sigma_{x}} \rangle - \frac{1}{(s_{\sigma})} \frac{1}{p_{eff}} \frac{\pi^{3/2} \cdot 2^{-5/2}}{s_{D}} \frac{\pi^{3/2} \cdot 2^{-5/2}}{(s_{\sigma})} \frac{1}{s_{r}} \cdot \left(s_{\sigma}) \frac{s_{r}}{r} \right) \cdot \left(s_{r} \frac{s_{r}}{r} \frac{s_{r}}{r} \right) \cdot \left(s_{r} \frac{s_{r}}{r} \frac{s_{r}}{r} \right) \right)$$

$$(2.77)$$

(2.76)

(2.75)

Führt man ein

$$s_{E_{x}} = \frac{\frac{(s_{\sigma_{oc}} s_{\Gamma})(s_{r} s_{\sigma_{ox}} s_{\Gamma})}{(s_{\sigma_{oc}} s_{\Gamma})(s_{r} s_{\sigma_{ox}} s_{\Gamma})}} \frac{s_{\Gamma_{n}} s_{\Gamma_{n}}}{(s_{\sigma_{oc}} s_{\Gamma})}$$

und verwendet (2.61) und (2.62), so geht (2.77) über in

$$= \frac{1}{s_{\sigma_{p,eff}}} \langle s_{\sigma_{x}} \rangle - \frac{1}{(s_{\sigma_{p,eff}})^{2}} \cdot \frac{\overline{s_{D}}}{\Delta\sqrt{2\pi}} \langle s_{\sigma_{x}} \rangle \langle s_{\sigma_{c}} \rangle s_{E_{x}}$$
(2.79)

1. Summand von (2.42) bzw. (2.75) läßt sich also approximativ darstellen durch (2.79).

Andererseits ist der 1. Summand von (2.42) aber gegeben durch (2.48). Setzt man (2.48) und (2.79) gleich, so erhält man

$$\frac{\frac{s_{\Gamma_{x}} J(s_{\theta}, s_{\beta})}{s_{D} \cdot \cos 2\delta_{g}}}{\frac{s_{D} \cdot \cos 2\delta_{g}}{s_{D} \cdot \cos 2\delta_{g}}} \stackrel{\sim}{=} \frac{1}{\frac{1}{s_{\sigma}}} \frac{s_{\sigma}}{s_{\sigma}} - \frac{1}{\frac{s_{\sigma}}{s_{\sigma}}} \frac{s_{\sigma}}{s_{p}, eff}} \cdot \frac{\frac{s_{D}}{s_{\sigma}}}{\frac{s_{\sigma}}{s_{\sigma}}} \langle s_{\sigma} \rangle \langle s_{\sigma} \rangle s_{E_{x}}}$$

Und demit

$$\frac{s_{\Gamma_{X}}}{s_{\Gamma_{X}}} J(s_{\theta}, s_{\beta}) \xrightarrow{s_{\Gamma_{n}}} \frac{s_{D} \cdot \cos 2\delta_{\ell}}{s_{\sigma_{D}, eff}} \langle s_{\sigma_{X}} \rangle \left[1 - \frac{\overline{s_{D}}}{\sqrt{2\pi\Delta}} \frac{\langle s_{\sigma_{C}} \rangle}{s_{\sigma_{D}, eff}} s_{E_{X}} \right]$$
(2.80)

x= Spaltung, Absorption.

2-20

(2.78)

Analog erhält man

$$\frac{1}{s_{\Gamma J}(s_{\theta}, s_{\beta})} = \frac{s_{D}(s_{\sigma})}{s_{\sigma_{p}, eff}} \left[1 - \frac{s_{D}}{\sqrt{2\pi\Delta}} \frac{\langle s_{\sigma} \rangle}{s_{\sigma_{p}, eff}} s_{E_{c}} \right]$$
(2.81)

Unter Verwendung von (2.39a) und (2.39b) läßt sich (2.78) vereinfachen

$${}^{s}E_{c} = \frac{\frac{{}^{s}\Gamma_{n}}^{s}\Gamma_{n}}{(\frac{{}^{s}\Gamma_{n}}^{s}\Gamma_{n}}^{s}\Gamma_{n}} = 1 + 2/\nu_{n}$$

(2.83)

(2.82)

Die Mittelungen

$$\frac{f(\Gamma_n, \Gamma_f)}{f(\Gamma_n, \Gamma_f)} = \int_{0}^{\infty} \int_{0}^{\infty} f(\Gamma_n, \Gamma_f) F_n(\Gamma_n) F_f(\Gamma_f) d\Gamma_n d\Gamma_f$$

werden numerisch ausgeführt. $F_n(\Gamma_n)$ bzw. $F_f(\Gamma_f)$ sind χ^2 Verteilungen.

2.4 Berechnung von Gruppenquerschnitten aus Meßkurven

Im gesamten Energiebereich werden gewöhnliche Gruppenmittelwerte von Meßkurven durch numerische Integration berechnet, also sowohl im Resonanz- als auch im resonanzfreien Energiebereich. Die Mittelwerte werden so gebildet, daß sie im Resonanzbereich definitionsgemäß mit den nichtabgeschirmten Querschnitten identisch sind.

$$\sigma_{\mathbf{x},\mathbf{g}}^{\mathbf{K},\mathbf{o}} = \frac{\int_{\mathbf{g}} d\mathbf{E} \ \sigma_{\mathbf{x}}^{\mathbf{K}}(\mathbf{E}) \ \mathbf{F}(\mathbf{E})}{\int_{\mathbf{g}} d\mathbf{E} \ \mathbf{F}(\mathbf{E})}$$

(2,84)

Im resonanzfreien Bereich ist es unerheblich, ob mit dem Neutronenfluß oder der Stoßdichte gewichtet wird. 3. Berechnung der elastischen Streumatrix $\sigma_{e,h \rightarrow g}^{K}$ (1.65)

Analog zu (2.5) wird zuerst eineelastische Streumatrix bei unendlicher Verdünnung definiert als

(3.1)

(3.2)

Führt man die Streuwahrscheinlichkeit ein

$$p_{e}^{K}(E' \rightarrow E) \qquad \frac{\sigma_{e}^{K}(E' \rightarrow E)}{\int dE \sigma_{e}^{K}(E' \rightarrow E)}$$
[alle E]

so geht (3.1) über in

$$\sigma_{e,h \neq g}^{K,\infty} = \frac{\int_{e}^{h} dE' \sigma_{e}^{K}(E') F(E') \int_{e}^{E} dE p_{e}^{K}(E' \neq E)}{\int_{E}^{h} dE' F(E')}$$
(3.3)
$$(3.3)$$

Es soll zuerst der Fall A > 6 untersucht werden (A = Massenzahl). Für die Gruppeneinteilung des hier vorliegenden Gruppensatzes bedeutet dies, daß die Streuung nur in die Machbargruppe erfolgt. (3.3) nimmt dann folgende Gestalt an:

$$\sigma_{e, h \rightarrow h+1}^{K} = \frac{\int_{e}^{E_{h+1}/\alpha^{K}} \sigma_{e}^{K}(E^{*}) F(E^{*}) \int_{K}^{E_{h+1}} dE p_{e}^{K}(E^{*} \rightarrow E)}{\int_{k}^{E_{h+1}} \sigma_{e}^{K}(E^{*})}$$

$$(3.4)$$

$$\int_{E_{h+1}}^{E_{h+1}} dE^{*} F(E^{*})$$

mit $\alpha^{K} = \left(\frac{A-1}{A+1}\right)^{2}$ (3.5)

3.1 Isotrope Streuung im c-System

Für isotrope Streuung im c-System kann die Integration über E sofort ausgeführt werden.

$$\int_{\alpha^{K} \bullet E^{*}}^{E} \frac{dE}{dE} p_{e}^{K}(E^{*} \to E) = \frac{E_{h+1} - \alpha^{K} E^{*}}{(1 - \alpha^{K})E^{*}}$$
(3.6)

Man erhält somit

$$\sigma_{e_{3}h \rightarrow h+1}^{K_{a}} = \frac{\int_{E_{h+1}}^{E_{h+1}/\alpha^{K}} \sigma_{e}^{K}(E^{*}) F(E^{*}) \frac{E_{h+1}-\alpha^{K}E^{*}}{(1-\alpha^{K})E^{*}}}{\int_{E_{h+1}}^{E_{h+1}} dE^{*} F(E^{*})}$$

(3.7)

1. Näherung: $\sigma_{e}^{K}(E) \stackrel{\sim}{=} \text{konst im Intervall } (E_{h+1}, E_{h+1}/\alpha^{K})$

$$\sigma_{e,h \rightarrow h+1}^{K,\infty} = \frac{\langle \sigma_{e}^{K}(E) \rangle \cdot \int_{e}^{E} h+1^{\alpha K} dE' F(E') \frac{E_{h+1} - \alpha^{K} E'}{(1-\alpha)E'}}{\int_{e}^{E} h+1}$$

mit

$$\langle \sigma_{e}^{K}(E) \rangle \equiv \frac{\alpha^{K}}{(1-\alpha^{K})E_{h+1}} \int_{E_{h+1}}^{E_{h+1}/\alpha^{K}} dE \sigma_{e}^{K}(E)$$
 (3.9)

(3.8)

Diese Näherung ist für leichte Elemente 6 < A < 26 unterhalb der Anisotropiegrenze gut, da der elastische Streuquerschnitt nahezu konstant ist.

2. Näherung:
$$\sigma_{e}^{K}(E) \stackrel{\sim}{=} konst, F(E) \stackrel{\sim}{=} konst im Intervall (E_{h+1}, E_{h+1}/\alpha^{K})$$

Diese Bedingungen sind für eine Reihe schwerer und mittelschwerer (A > 26) Isotope unterhalb der Anisotropiegrenze erfüllt, da wegen $\alpha^{K} \rightarrow 1$ das Intervall (E_{h+1} , E_{h+1}/α^{K}) sehr klein wird. (3.8) läßt sich weiter vereinfachen

$$\sigma_{e,h \rightarrow h+1}^{K,\infty} = \frac{\langle \sigma_{e}^{K} \rangle F(E_{h+1})}{\int_{E_{h+1}}^{h} dE' F(E')} \cdot \int_{E_{h+1}}^{E_{h+1}/\alpha^{K}} \frac{E_{h+1}-\alpha^{K}E'}{(1-\alpha^{K})E'} dE'$$
(3.10)

Das Integral

$$P_{e_{s}h \to h+1}^{K} \equiv \int_{E_{h+1}}^{E_{h+1}/\alpha^{K}} \frac{E_{h+1} - \alpha^{K}E^{*}}{(1-\alpha^{K})E^{*}} dE^{*} = \frac{E_{h+1}}{1-\alpha^{K}} \left[\ln 1/\alpha^{K} - (1-\alpha) \right]$$
(3.11)

Da a * 1, läßt sich folgende Entwicklung durchführen

$$\ln \frac{1}{\alpha^{K}} = (1 - \alpha^{K}) + \frac{(1 - \alpha^{K})^{2}}{2} + \frac{(1 - \alpha^{K})^{3}}{3}$$
(3.12)

Damit erhält man

$$p_{e_{s}h \rightarrow h+1}^{K} \stackrel{\sim}{=} E_{h+1} \left[\frac{1-\alpha^{K}}{2} + \frac{(1-\alpha^{K})^{2}}{3} \right]$$
(3.13)

und

$$\sigma_{e,h \rightarrow h+1}^{K,\infty} = \frac{\sigma_{e}^{K} F(E_{h+1}) \cdot p_{e,h \rightarrow h+1}^{K}}{\int_{h}^{h} dE' F(E')}$$

(3:14)

3.2 Anisotrope Streuung im c-System

Es werden folgende Annahmen gemacht:

- $\sigma_{\Delta}^{\underline{K}}(\underline{E})$ sei schwach veränderlich
- F(E) sei schwach veränderlich

Damit erhält man formal (3.14), $p_{e,h\rightarrow h+1}^{K}$ ist aber nicht mehr durch (3.13) gegeben, sondern durch

$$p_{e,h \rightarrow h+1}^{K} \equiv \int_{h+1}^{E} \int_{\alpha^{K} E}^{h+1} dE p(E' \rightarrow E)$$

$$(3.15)$$

Wenn man sich auf lineare Anisotropie beschränkt, gilt

$$p(E' \to E) = \frac{1}{(1-\alpha)E'} \left(1 + 3\mu^{c} - \frac{6}{1-\alpha} \mu^{c} \frac{E'-E}{E'}\right)^{[3]}$$
(3.16)

μ^C ist der mittlere Kosinus des Streuwinkels im c-System.

Zwischen μ , dem mittleren Kosinus des Streuwinkels im L-System, und μ^{c} gilt unter Annahme (3.16) der Zusammenhang

$$\mu = \frac{2}{3A} + \mu^{c} \left(1 - \frac{3}{5A^{2}}\right)$$
(3.17)

$$\int_{\alpha E'}^{E} dE p(E' \rightarrow E) = \frac{E_{h+1} - \alpha E'}{(1 - \alpha)E'} (1 - 3\mu^{c} \frac{E' - E_{h+1}}{(1 - \alpha)E'})$$
(3.18)
(3.18)

 $\mu^{C}(E^{*})$ wird im Intervall ($E_{h+1}^{}$, $E_{h+1}^{}/\alpha$) als schwach veränderlich angenommen und durch den Mittelwert ersetzt

3-6

$$<\mu^{c}> = \int_{E_{h+1}/\alpha}^{E_{h+1}/\alpha} dE' \mu^{c}(E') / (E_{h+1} \cdot \frac{1+\alpha}{\alpha})$$
 (3.19)

$$P_{e,h \to h+1} = \int_{E_{h+1}}^{E_{h+1}/\alpha} \frac{E_{h+1} - \alpha E'}{(1-\alpha)E'} \quad (1-3<\mu^{c} > \frac{E' - E_{h+1}}{(1-\alpha)E'}) \quad (3.20)$$

Der anisotrope Anteil in (3.20) ergibt ausintegriert

$$-3 < \mu^{c} > \frac{E_{h+1}}{(1-\alpha)^{2}} \left[(1+\alpha) \ln 1/\alpha - 2 (1-\alpha) \right]$$
(3.21)

Für $\alpha \approx 1$ wird ln $1/\alpha$ entwickelt

$$\ln 1/\alpha = (1-\alpha) + \frac{(1-\alpha)^2}{2} + \frac{(1-\alpha)^3}{3} + \frac{(1-\alpha)^4}{4} \qquad (3.22)$$

oder

$$(1-\alpha) = \ln 1/\alpha - \frac{(1-\alpha)^2}{2} - \frac{(1-\alpha)^3}{3} - \frac{(1-\alpha)^4}{4} \dots$$
 (3.23)

Setzt man (3.23) in (3.21) ein, so erhält man

$$-3 < \mu^{c} > \cdot \frac{E_{h+1}}{(1-\alpha)} \left[-\ln 1/\alpha + (1-\alpha) + \frac{2}{3} (1-\alpha)^{2} + \frac{1}{2} (1-\alpha)^{3} \right]$$
(3.24)

(3.25)

Setzt man (3.22) in (3.24) ein und vernachlässigt Glieder höherer Ordnung, so erhält man

$$-3 < \mu^{c} > E_{h+1} \left[\frac{1-\alpha}{6} + \frac{(1-\alpha)^{2}}{6} \right] = - < \mu^{c} > E_{h+1} \left[\frac{1-\alpha}{2} + \frac{(1-\alpha)^{2}}{2} \right]$$

Der isotrope Anteil ist durch (3.13) gegeben. Für den Fall linearer Anisotropie erhält man also

$$p_{e_{h+h+1}}^{K} = E_{h+1} \frac{1-\alpha^{K}}{2} (1-\langle \mu^{c} \rangle) + E_{h+1} \frac{(1-\alpha^{K})}{3} (1-\frac{3}{2}\langle \mu^{c} \rangle)$$
(3.26)

oder unter Verwendung von (3.17)

$$p_{e,h+h+1}^{K} = E_{h+1} \frac{1-\alpha^{K}}{2} \left\{ 1 - \frac{1}{(1-\frac{3}{5A^{2}})} \left[<\mu > K - \frac{2}{3A} \right] \right\} + E_{h+1} \frac{(1-\alpha^{K})^{2}}{3} \cdot (3.27)$$
mit
$$\cdot \left\{ 1 - \frac{3}{2(1-\frac{3}{5A^{2}})} \left[<\mu > K - \frac{2}{3A} \right] \right\}$$

$$<\mu>^{K} = \int_{E_{h+1}}^{E_{h+1}/\alpha^{K}} \mu^{K}(E^{*}) dE^{*} / (E_{h+1} \frac{1-\alpha^{K}}{\alpha^{K}})$$
 (3.28)

Eine andere Möglichkeit, die Übergangswahrscheinlichkeiten $p_{e,h \rightarrow h+1}^{K}$ zu erhalten, ist die numerische Integration von experimentellen Winkelverteilungen über die der Energiegruppeneinteilung entsprechenden Winkelbereiche. Für die in den Tabellen angegebenen elastischen Streumatrizen wurde (3.27) verwendet. Die numerische Integration von experimenteller Winkelverteilung wird in Kapitel 3.5 beschrieben. 3.3 Die Streumatrix für Wasserstoff.

$$p(E' \rightarrow E) = \frac{1}{E'} , \int_{E}^{E} \frac{dE}{E'} = \frac{E_g - E_{g+1}}{E'}$$

$$\sigma_{e,h \rightarrow g}^{H} = \sigma_{e,h \rightarrow g}^{H,\infty} = \frac{\int_{e}^{E} h}{\int_{e}^{h+1} dE' F(E') \sigma_{e}^{H}(E') \frac{(E_{g} - E_{g+1})}{E'}}{\int_{e}^{h} dE' F(E')}$$

3.4 Resonanzselbstabschirmung.

Alle bisherigen Näherungen wurden unter der Bedingung des resonanzfreien Querschnittsverlaufes hergeleitet. Im Resonanzgebiet kann man die effektive Streumatrix in grober Näherung bestimmen in der Form

$$\sigma_{e,h \to g}^{K} = \sigma_{e,h \to g}^{K} \cdot f_{e,h}^{K}$$
(3.30)

(3,29)

Diese Näherung kann in speziellen Fällen zu recht großen Fehlern führen. Eine exakte Behandlung der Streumatrix unter Berücksichtigung der Resonanzstruktur wird im nächsten Abschnitt gegeben. 3.5 Berechnung der Streumatrix unter exakter Berücksichtigung der Resonanzstruktur in der Narrov Resonance Approximation.

Die bisher aufgezeigten Näherungen sind alle nur gültig, falls die mikroskopischen Wirkungsquerschnitte keine Resonanzstruktur besitzen. Die Streumatrix für A > 6ist gegeben durch

$$\sigma_{\mathbf{x},\mathbf{h},\mathbf{h}+1}^{K} = \frac{\int_{\mathbf{h}+1}^{\mathbf{h}+1/\alpha} \sigma_{\mathbf{e}}^{K}(\mathbf{E}') \phi(\mathbf{E}') \int_{\alpha^{K} \mathbf{E}'}^{\mathbf{h}+1} d\mathbf{E} p_{\mathbf{e}}^{K}(\mathbf{E}',\mathbf{E})}{\int_{\alpha^{K} \mathbf{E}'}^{\mathbf{h}} d\mathbf{E}' \phi(\mathbf{E}')}$$
(3131)

Führt man die Stoßdichte ein

$$\phi(E^{\bullet}) = \frac{F(E^{\bullet})}{\sum_{t}(E)}$$

so erhält man

$$\sigma_{x,h \rightarrow h+1}^{K} = \frac{\int_{E_{h+1}}^{E_{h+1}/\alpha} \sigma_{t}^{K}(E^{*}) F(E^{*})}{\int_{E_{h+1}}^{E_{h+1}} \sigma_{t}^{K}(E^{*}) + S \frac{N^{K}}{N^{K}} \sigma_{t}^{K^{*}}(E^{*})} \int_{\alpha}^{E_{h+1}} dE p_{e}^{K}(E^{*} \rightarrow E)}{\int_{\alpha}^{E_{h+1}} dE^{*} \frac{F(E^{*})}{\sigma_{t}^{K}(E^{*}) + S \frac{N^{K}}{N^{K}}} \sigma_{t}^{K^{*}}(E^{*})}$$
(3.32)

Auf die in (3.1) definierte elastische Streumatrix bei unendlicher Verdünnung kommt man nun dadurch, daß $\underset{K' \neq K}{\overset{K'}{\to} K} \sigma_t^{K'}(E')$ durch einen über das Integrationsintervall gemittelten Wert σ_o ersetzt wird. (3.1) erhält man dann entweder für $\sigma_o \rightarrow \infty$, oder falls $\sigma_t^{K}(E')$ konstant ist im Integrationsintervall. Die in den Abschnitten 3.1 bis 3.4 angegebenen Näherungen setzen sowohl $\sigma_t^{K}(E)$ schwach veränderlich als auch einenkonstanten Untergrund σ_o voraus. Vor allem im Resonanzgebiet von Fe, Na, C, O ist keine der oben genannten Bedingungen erfüllt. Zur Berechnung der elastischen Streumatrix wird deshalb (3.32) verwendet. Die exakte Berücksichtigung der Größe $\underset{K' \neq K}{S} \frac{\prod^{K'}}{N^{K}} o_t^{K'}(E')$ verlangt eine Berechnung der Streumatrix für jede Reaktorzusammensetzung neu aus mikroskopischen, energieabhängigen Wirkungsquerschnitten und Streuwahrscheinlichkeiten. Die Wirkungsquerschnitte für elastische Streuung und die totalen Wirkungsquerschnitte sind an ungefähr 1000 Energiepunkten tabelliert.

Die Streuwahrscheinlichkeit von der Energie E' in die Gruppe (h+1) $p_e^{K}(E') = \int_{\alpha} dE p_e^{K}(E') = \int_{\alpha} dE$

3.6 Der bremselastische Querschnitt.

Als bremselastischer Querschnitt gilt die totale elastische Ausstreuung aus einer Gruppe

$$\sigma_{be_{a}g}^{K} = \underset{g'>g}{S} \sigma_{e_{a}g \rightarrow g'}^{K}$$
(3.33)

Falls Streuung nur in die benachbarte Gruppe stattfindet, ist der bremselastische Querschnitt identisch mit der Nebendiagonale der Streumatrix. 4. Berechnung der inelastischen Streumatrix. Berücksichtigung von (n,2n)-Prozessen.

Die inelastische Streumatrix wurde vom russischen ABN^{|1|}-Satz übernommen. Die einzelnen Streuvektoren wurden lediglich auf den neu berechneten totalen inelastischen Streuquerschnitt unnormiert

$$\sigma_{\text{in},h\rightarrow g}^{K} = \sigma_{\text{in},h\rightarrow g}^{K} (ABN) \cdot \frac{\sigma_{\text{in}}^{K}}{\sigma_{\text{in}}^{K} (ABN)}$$

(4.1)

In der ersten Gruppe enthält σ_{in}^{K} , bzw. $\sigma_{in,h \rightarrow g}^{K}$ für die Elemente U235, U238, Pu239 auch (n,2n)-Prozesse. Für diesen Fall wurde sowohl σ_{in}^{K} als auch $\sigma_{in,h \rightarrow g}^{K}$ unverändert vom ABN-Gruppenkonstantensatz übernommen.

5. Berechnung der Diffusionskonstante bzw. des Transportgruppenquerschnitts.

5.1 Keine isotrope Überstreuung.

Der mikroskopische Gruppentransportquerschnitt ist in (1.53) definiert.

$$\sigma_{\mathrm{tr}_{gg}}^{\mathrm{K}} = \sigma_{\mathrm{t}_{gg}}^{\mathrm{K}} - \sigma_{\mathrm{e}_{gg}}^{\mathrm{K}} \cdot \mu_{\mathrm{gg}}^{\mathrm{K}}$$
(5.1)

$$\sigma_{t_{gg}}^{K}$$
 und $\sigma_{e_{gg}}^{K}$ sind gegeben durch (1.67).

Für die Wichtungsfunktion wird folgende Energieabhängigkeit im Resonanzgebiet angenommen:

$$1^{\phi(E)} \sim \frac{F(E)}{\sum_{+}^{2}(E)}$$
(5.2)

F(E) = Stoßdichte $\sum_{t} (E) = totaler makroskopischer Wirkungsquerschnitt$

Damit erhält man

$$\overset{\circ}{\sigma_{t,g}^{K}}_{t,g} = \frac{\int_{(g)}^{dE} \sigma_{t}^{K}(E) \cdot \frac{F(E)}{\sum_{t}^{2}(E)}}{\int_{(g)}^{dE} \frac{F(E)}{\sum_{t}^{2}(E)}}$$
(5.3)

Man führt einen totalen Wirkungsquerschnitt bei unendlicher Verdünnung ein als

$$\mathcal{C}_{t,\mathcal{E}}^{K,\infty} = \frac{\int_{(E)}^{dE} \sigma_{t}^{K}(E) F(E)}{\int_{(E)}^{dE} F(E)}$$

(5.4)

und einen totalen energetischen Selbstabschirmfaktor

$$\sum_{i=1}^{N} \frac{\nabla_{i} K}{\nabla_{i} g} = \frac{\nabla_{i} K}{\sum_{j=1}^{N} \frac{\nabla_{j} K}{\nabla_{j} \sigma}}$$

Die Berechnung von $\sigma_{t,g}^{K,\infty}$ erfolgt numerisch aus Meßdaten.

Der energetische Selbstabschirmfaktor wird hier noch vom ABN-Gruppenkonstantensatz übernommen.

 $\overset{\circ}{\overset{\circ}{\operatorname{g}}}_{\operatorname{e,g}}^{\operatorname{K}}$ wird im Resonanzbereich nur approximativ berechnet unter Verwendung von f

(5.5)

$$\overset{\mathcal{K}}{\overset{\mathcal{V}}{\mathsf{e}}_{\mathfrak{g}}} \overset{\mathcal{K}}{\overset{\mathcal{V}}{\mathsf{f}}} \overset{\mathcal{K}}{\overset{\mathcal{K}}{\mathsf{f}}_{\mathfrak{g}}} = \sigma_{\mathfrak{f}_{\mathfrak{g}}}^{K} = \sigma_{\mathfrak{f}_{\mathfrak{g}}}^{K} = \sigma_{\mathfrak{f}_{\mathfrak{g}}}^{K} = \sigma_{\mathfrak{f}_{\mathfrak{g}}}^{K} = \sigma_{\mathfrak{f}_{\mathfrak{g}}}^{K} = \sigma_{\mathfrak{f}_{\mathfrak{g}}}^{K}$$
(5.6)

oder

$$\int_{\sigma}^{v} \frac{K}{f_{g}g} = \sigma_{t_{g}g}^{K_{g}\infty} \cdot \int_{f_{g}g}^{K} - \sigma_{f_{g}g}^{K_{g}\infty} \cdot f_{f_{g}g}^{K} - \sigma_{\gamma_{g}g}^{K} \cdot f_{\gamma_{g}g}^{K} - \sigma_{in_{g}g}^{K} - \sigma_{2n_{g}g}^{K}$$
(5.7)

Für den resonanzfreien Energiebereich ist Beziehung (5.7) exakt.

 μ_g^K wird aus experimentellen Kurven für den mittleren Cosinus des Streuwinkels nach Formel (1.70) bestimmt.

5.2 Transportquerschnitt für Vasserstoff.

Es wird Formel (1.57) zugrunde gelegt. Verwendet man (1.62) und (5.2) und berücksichtigt, daß Wasserstoff keine Resonanzstruktur besitzt, so erhält man

$$\sigma_{tr_{\mathfrak{g}}g}^{\mathrm{H}} = \sigma_{t_{\mathfrak{g}}g}^{\mathrm{H}_{\mathfrak{g}}\infty} - S \sigma_{e_{\mathfrak{g}}h \to g}^{\mathrm{H}_{\mathfrak{g}}\infty} * \mu_{h \to g}^{\mathrm{H}} \xrightarrow{\operatorname{divj}_{n}}_{\operatorname{divj}_{g}}$$
(5.8)

$$F_{h} = \int_{(h)} F(E) dE$$
, $F_{E} = \int_{(g)} F(E) dE$

6. Beschreibung der Gruppensätze und Tabellen.

6.1 Der KFK-SNEAK-Gruppensatz.

Spezifizierung: GROUCO 2; a26-GR.SNEAK 001a .

Dieser Gruppensatz ist für dampfgekühlte Reaktoren erstellt worden. Eine Anpassung an Messungen an einem bestimmten Reaktortyp ist nicht erfolgt. Eine Beschränkung der Anwendung auf dampfgekühlte Anordnungen ist nur insofern gegeben, als das Stoßdichte-Wichtungsspektrum dem einer typischen schnellen Anordnung entspricht.

Das Stoßdichtespektrum wurde durch Glätten eines für SNEAK-3A-2 (Dampfdichte 0,07 g/cm³) mit ABN-^[1] bzw. KFK-^[4] Satz berechneten 26-Gruppenspektrums ermittelt (Abb. I). Für eine genauere Berechnung der elastischen Streumatrix ist mit der in Kapitel 3.5 beschriebenen Berechnungsmethode eine iterative Verbesserung möglich. Man verwendet die erste Lösung für die Stoßdichte als Wichtungsfunktion zur Berechnung einer korrigierten Streumatrix und erhält damit einen verbesserten Multigruppenfluß. Die für die Anwendung der in Kapitel 3.5 beschriebenen Methoden notwendigen mikroskopischen Daten sind nicht tabelliert.

Neu berechnet wurdendie Gruppenkonstanten für die Isotope H, C, O, Na, Al, Cr, Fe, Ni, U235, U238, Pu239. Alle übrigen Isotope sind vom 26-Gr. ABN-Satz unverändert übernommen. Dies bedingt eine Inkonsistenz in der Wichtung, da die vom 26-Gr. ABN-Satz übernommenen Gruppenkonstanten 1/E-gewichtet sind. Insbesondere ist diese Inkonsistenz in der thermischen Gruppe zu beachten. Für die oben erwähnten Isotope wurde auch in der thermischen Gruppe das in Abb. I dargestellte Wichtungsspektrum verwendet.

Den Berechnungen liegen Kerndaten des Karlsruher Kerndatenbandes KEDAK zugrunde. Die Quellenangaben können, falls nicht ausdrücklich anderserwähnt, den Arbeiten [5] und [6] entnommen werden. Der Stand von KEDAK entsprach zum Zeitpunkt der Erstellung von KFK-SNEAK den in [6] angeführten Tabellen.

6.2 Der KFK-H2O-PMB-Gruppensatz.

Spezifizierung: GROUCO 4, a26-GR, H20P BOO1a

Mit Ausnahme von σ_{f}^{∞} , σ_{γ}^{∞} für U235 in den Gruppen 7-10 (das entspricht dem Energiebereich 21,5 keV - 400 keV) und von σ_{γ}^{∞} für U238 in den Gruppen 6-11 (das entspricht dem Energiebereich 10 keV - 800 keV) ist der KFK-H2O-PMB-Satz identisch mit dem KFK-SNEAK-Satz. Zur Berechnung der Gruppenquerschnitte σ_{γ}^{∞} , σ_{f}^{∞} für U235 und σ_{γ}^{∞} für U238 in den oben genannten Energiebereichen wurden die in |11|, |12|, angegebenen Daten verwendet. Das Wichtungsspektrum entspricht dem des KFK-SNEAK-Satzes.

6.3 Der KFK-NAP-PMB-Gruppensatz.

Spezifizierung: GROUCO 5; a26-GR.NAPPMB001a

Dieser Gruppensatz ist für Na-gekühlte Reaktoren vorgesehen. Er entspricht mit Ausnahme der elästischen Streumatrix dem KFK-H2O-PMB-Gruppensatz. Da mit Ausnahme der Streumatrix alle übrigen Gruppenkonstanten in den für Natrium-Reaktoren wichtigen Energiegruppen nur sehr schwach vom Stoßdichtespektrum abhängen, wurden diese vom KFK-H2O-PMB-Satz übernommen. Die elastische Streumatrix wurde mit einem für einen Na-gekühlten schnellen Reaktor typischen Stoßdichtespektrum neu berechnet. Es wird eine Streumatrix für ein Corespektrum (Abb. II) und ein Blanketspektrum (Abb. III) angegeben.

6.4 <u>Zusammenstellung der in den Gruppensätzen KFK-SNEAK, KFK-H2O-PMB,</u> <u>KFK-NAP-PMB enthaltenen Gruppenkonstanten.</u>

- a) <u>KFK-SNEAK:</u> GROUCO 2; α26-GR, SNEAK 001α Dieser Gruppensatz enthält die in den Kapiteln 6.5 bis 6.16 aufgeführten Isotope. Alle übrigen Isotope sind vom 26-Gr. ABN-Satz übernommen.
- b) KFK-H2O-PMB: GROUCO 4; a26-GR.H2OPMB001a

Mit Ausnahme der in 6.17 aufgeführten Daten entspricht dieser Gruppensatz dem KFK-SNEAK-Satz. Die in Kapitel 6.17 angegebenen Gruppenquerschnitte treten an die Stelle der entsprechenden Querschnitte in Kapitel 6.14 und Kapitel 6.15.

c) KFK-NAP-PMB: GROUCO 5; a26-GR. NAPPMBOO1a

Dieser Gruppensatz ist bis auf die elastische Streumatrix bzw. die bremselastischen Querschnitte identisch mit dem KFK-H2O-PMB-Satz. Die bremselastischen Querschnitte sind in Kapitel 6.18 aufgeführt.

Gruppe	obere Gruppengrenze [eV]	x	1/v [<u>sec</u>]
1	10,5 • 10 ⁶	0,018	2,675 · 10 ⁻¹⁰
2	$6,5 \cdot 10^{6}$	0,095	3,286 • 10-10
3	$4.0 \cdot 10^{6}$	0,188	4,161 • 10 ⁻¹⁰
4	$2,5 \cdot 10^{6}$	0,269	5,347 · 10 ⁻¹⁰
5	1,4 • 10 ⁶	0,198	7,232 · 10 ⁻¹⁰
6	8,0 • 10 ⁵	0,137	9,767 · 10 ⁻¹⁰
7	4,0 • 10 ⁵	0,059	1,379 • 10 ⁻⁹
8	2,0 • 10 ²	0,023	1,930 • 10 ⁻⁹
9	1,0 • 10	0,009	2,786 • 10-9
10	4,65 • 104	0,003	4,073 * 10 ⁻⁹
11	2,15 104	0,001	5,960 · 10 ⁻⁹
12	1,0 • 104		8,817 • 10-9
13	4,65+ 10 ³		1,278 • 10
14	2,15 · 10 ³		1,898 • 10 ⁻⁰
15	1,0 • 10 ³		2,765 • 10 ⁻⁰
16	4,65 10 ²		4,044 • 10
17	2,15 · 10 ²		5,929 • 10 ⁻⁰
18	1,0 • 10 ²		8,848 • 10-8
19	46,5 .		1,267 • 10-7
20	21,5		1,918 • 10-7
21	10 <u>,</u> 0		2,734 • 10-7
22	4,65		4,069 • 10-7
23	2,15		·5,961 • 10 ⁻⁷
24	1,0		8,530 • 10-7
25	0,465		1,264 • 10-6
26	0,215		2,079 • 10 ⁻⁶

Der 1/v-Mittelwert wurde nach (1.71), das Neutronenspaltspektrum nach (1.66) berechnet.

6.5 Der 1/v-Mittelwert, das Neutronenspaltspektrum.

6.6 Wasserstoff H.

	the second s	
Querschnittstyp	Gruppe	Berechnungsart
σ _γ	11–23 24 – 26	(2.84) siehe [9], [10]
σ _e	1=23 24=26	(2,84) siehe [9], [10]
σ_{t}^{∞}	1 - 10 11 - 26	$\sigma_{t}^{\alpha} = \sigma_{e}^{\alpha} + \sigma_{\gamma}^{\alpha}$
μ _e	1-23 24-26	(1.70) siehe [9], [10]
σ [∞] e,h→h+i	1-23 24-25	(3.29) siehe [9], [10]
^o be,h	1-25	(3.33)
^µ e,h→h+i	1 ∞ 23	vom ABN-Satz übernommen
	24∞27	siene [9], [10]

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. In den Gruppen 24 bis 26 wurde die Bindung des Wasserstoffs in H₂O berücksichtigt. Dokumentation [6], [9], [10] Wichtungsspektrum Abb. I.

H								
				r		· .		
h	E _h	σ _t	σγ	σ _{in}	σ _e	μ.	σ _{be}	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 24	1.05E 01 6.50E 00 2.50E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-03 4.65E-04 2.15E-04 1.00E-03 4.65E-04 2.15E-04 1.00E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-07 2.15E-07	1.23E 00 1.70E 00 2.30E 00 3.08E 00 4.28E 00 5.90E 00 8.33E 00 1.12E 01 1.43E 01 1.43E 01 1.69E 01 1.95E 01 1.97E 01 1.97E 01 2.00E 01 2.02E 01 2.05E 01 2.05E 01 2.05E 01 2.07E	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	• 1.23E 00 1.70E 00 2.30E 00 3.08E 00 4.28E 00 5.90E 00 8.33E 00 1.12E 01 1.43E 01 1.69E 01 1.95E 01 1.97E 01 1.99E 01 2.00E 01 2.02E 01 2.05E 01 2.06E 01 2.07E 01 2.08E 01	6.67E-01 6.67E-01	1.11E 00 1.48E 00 2.00E 00 2.48E 00 3.61E 00 4.61E 00 6.41E 00 8.37E 00 1.04E 01 1.31E 01 1.31E 01 1.36E 01 1.38E 01 1.38E 01 1.38E 01 1.38E 01 1.39E 01 1.39E 01 1.43E 01 1.43E 01 1.43E 01 1.46E 01 1.56E 01 1.36E 01 1.26E 01	
26	2.156-07	4.23E CI	2.94E-01	0.	4.20E 01	2.60E-01	0.	

σ _{e, h→h +i} [barn]								Η			
h	0	1	2	3	4	5	6	7	8	9	10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.12 0.22 0.30 0.59 0.67 1.30 1.92 2.83 3.95 4.95 5.43 5.61 5.43 5.61 5.84 4.31 6.11 6.08 5.19 6.53 6.56 5.57 6.40 6.06 5.34 8.40 12.40	0.43 0.55 0.88 1.06 1.81 2.30 3.21 4.48 5.57 6.37 7.00 7.32 7.31 8.25 7.41 7.47 8.04 7.42 7.44 8.04 7.42 7.44 8.04 7.69 7.90 8.35 8.10 12.60	0.26 0.41 0.48 0.71 0.90 1.15 1.72 2.09 2.56 2.97 3.27 3.27 3.37 3.40 3.86 3.41 3.47 3.76 3.42 3.46 3.42 3.46 3.54 3.54 3.54 3.54 3.50	0.19 0.22 0.35 0.45 0.62 0.96 1.19 1.51 1.57 1.59 1.77 1.58 1.62 1.73 1.62 1.73 1.65 1.72 3.36	0.10 0.15 0.16 0.24 0.29 0.37 0.45 0.56 0.64 0.70 0.73 0.74 0.75 0.80 0.77 1.48	0.07 0.07 0.08 0.09 0.11 0.13 0.17 0.21 0.26 0.30 0.33 0.34 0.35 0.34 0.35 0.38 0.34 0.35 0.38 0.36	0.03 0.04 0.04 0.05 0.06 0.08 0.10 0.12 0.14 0.15 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16 0.32	0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.04 0.04 0.04 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03	0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
μ _{e,h→h+i} [barn]											
h	0	1	2	3	4	5	6	7	8	9	10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25	0.94 0.94 0.93 0.92 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90		0.66 0.64 0.59 0.57 0.54 0.53 0.52 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.4	0.51 0.48 0.44 0.38 0.37 0.36 0.34 0.56	0.38 0.35 0.31 0.29 0.27 0.25 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.28 0.25 0.22 0.20 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.20 0.18 0.15 0.14 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11	0.14 0.12 0.10 0.09 0.08 0.08 0.07 0.05	0.10 0.08 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.07 0.06 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03	0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
6.7 Kohlenstoff C.

Querschnittstyp	Gruppe	Berechnungsart
σ _γ , σ _e	1-26	(2.84)
σ in	1–2	(2,84)
$\sigma_{t}^{\tilde{c}}$	1 - 2 3 - 26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
$\sigma_{e,h \rightarrow h+1}^{\infty} = \sigma_{be,h}^{\infty}$	1-8 9-25	(3.14),(3.9),(3.27),(3.28) (3.8), (3.9)
f _n	1-4 5-26	aus Meßdaten nach (2.7), (2.4), (2.5), (2.84) f _n =1
fγ, f _t	1-3 4-26	vom ABN-Satz übernommen f _y =1, f _t =1
^σ in,h→h+i	1-2	(4.1)

 (n, α) -Reaktionen sind in σ_{γ} enthalten. Die Kerndaten sind dem Karlsruher Kerndatenband entnommen.

Dokumentation 6.

				С			
h	.E h	σ _t	σγ	0 _{in}	٥	μ _e	σ _{be}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07 2.15E-07	1.14E 00 1.47E 00 1.99E 00 1.90E 00 2.64E 00 3.29E 00 3.87E 00 4.25E 00 4.48E 00 4.60E 00 4.60E 00 4.66E 00 4.66E 00 4.66E 00 4.71E	2.57E-02 3.69E-05 0. 0. 0. 0. 0. 0. 0. 5.15E-06 1.00E-05 1.52E-05 2.18E-05 3.17E-05 4.88E-05 7.08E-05 1.03E-04 1.51E-04 2.25E-04 3.33E-04 4.84E-04 6.99E-04 1.03E-03	2.94E-01 6.48E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	8.24E-01 1.41E 00 1.99E 00 1.90E 00 2.64E 00 3.29E 00 3.29E 00 4.25E 00 4.25E 00 4.48E 00 4.60E 00 4.60E 00 4.66E 00 4.66E 00 4.66E 00 4.71E	4.22E-01 2.00E-01 1.81E-02 8.21E-02 1.28E-01 1.13E-01 8.64E-02 5.68E-02 5.56E-02	5.98E-01 5.98E-01 1.01E 00 5.84E-01 9.94E-01 8.75E-01 9.74E-01 8.25E-01 8.25E-01 8.25E-01 8.32E-01 8.32E-01 7.99E-01 7.97E-01 7.39E-01 7.39E-01 7.26E-01 7.14E-01 8.12E-01 8.03E-01 7.47E-01 6.33E-01 6.12E-01

σ _{in,h→h+i} [barn]											
ni	0	1	2	3	4	5	6				
1 2	0.00	0.00	0.06 0.00	0.17 0.04	0.04 0.02	0.02 0.01	0.01				
<u> </u>											
h 00	0	101	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	fe			
1 2 3 4	0.88 0.94 0.94 0.97	0.98 0.99 0.99 0.99	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00				
h ⁰ 0	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	ft			
1 2 3	0.81 0.85 0.94	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00				

t to the

6.8 Sauerstoff 0.

Querschnittstyp	Gruppe	Berechnungsart
σγ, σ γ, e	1-26	(2.84)
^o in	1	(2.84)
σ _o t	1 2 - 26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
σ [∞] e,h→h+1 ^{=σ} be,h	1-8 9-23 24-25	(3.14),(3.9),(3.27),(3.28) (3.14),(3.9),(3.13) (3.8),(3.9)
fn	1-6 7-26	aus Meßdaten nach (2.7), (2.4), (2.5),(2.84) f _n = 1
f _y , f _t	1=6 7=26	vom ABN-Satz übernommen f _y = 1, f _t = 1
^σ in,h→h+i	1	(4.1)

 (n,α) -Reaktionen sind in σ_γ enthalten. Die Kerndaten sind dem Karlsruher Kerndatenband entnommen.

Dokumentation 6

hE σ_1 σ_{γ} σ_{in} σ_e μ_e σ_{be} 11.05E 011.09E 008.44E-021.64E-018.42E-011.79E-015.97E-0126.50E 001.41E 005.65E-020.1.36E 002.42E-014.43E-0134.00E 001.87E 001.98E-030.1.87E 002.71E-013.70E-0142.50E 001.79E 000.0.1.79E 001.39E-015.16E-0151.40E 004.16E 000.0.4.16E 007.38E-021.35E 0068.00E-013.79E 000.0.3.70E 001.48E-017.82E-0182.00E-013.70E 000.0.3.70E 001.18E-026.10E-0191.00E-013.70E 000.0.3.70E 004.17E-025.02E-01104.65E-023.70E 000.0.3.70E 004.17E-025.22E-01121.00E-023.70E 000.0.3.70E 004.17E-025.22E-01134.65E-033.70E 000.0.3.70E 004.17E-024.65E-01142.15E-033.70E 000.0.3.70E 004.17E-024.65E-01172.15E-043.70E 000.0.3.70E 004.17E-024.65E-01164.65E-053.70E 000.0.3.70E 004.17E-024.65E-01164.65E-053.70E 000.0.3.70E 004.17E-024.65E-01					0			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	h	E _h	σ _t	σγ	σ _{in}	σ _e	μ	σ _{be}
25 4.65E-07 3.73E 00 0. 0. 3.73E 00 4.17E-02 3.57E-01	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 18 19 20 21 22 23 24 25	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 4.00E-01 4.65E-02 2.15E-02 1.00E-01 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-05 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-07	1.09E 00 1.41E 00 1.87E 00 1.79E 00 4.16E 00 5.79E 00 3.70E 00	8.44E-02 5.65E-02 1.98E-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.64E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	8.42E-01 1.36E 00 1.87E 00 1.79E 00 4.16E 00 5.79E 00 3.90E 00 3.70E	1.79E-01 2.42E-01 2.71E-01 1.39E-01 7.38E-02 2.40E-01 -1.48E-01 1.18E-02 4.17E-02	5.97E-01 4.43E-01 3.70E-01 5.16E-01 1.35E 00 1.50E 00 7.82E-01 6.10E-01 5.61E-01 5.02E-01 5.10E-01 5.23E-01 4.70E-01 4.91E-01 4.64E-01 4.64E-01 4.64E-01 4.65E-01 4.20E-01 4.11E-01 3.97E-01 6.18E-01 4.03E-01 3.63E-01 3.57E-01

2		0							
	h	0	1	2	3	4	5	6	
	1	0.00	0.00	0.02	0.05	0.05	0.03	0.01	

h 00	0	10 ¹	10 ²	10 ³	10 4	10 ⁵	10 ⁶	fγ
1 2	0.85 0.80	0.99 0.98	1.00	1.00	1.00	1.00	1.00	
h O ₀	0	10 ¹	10 ²	10 ³	10 4	10 ⁵	10 ⁶	f _e
1 2 3 4 5 6	0.97 0.90 C.82 0.82 0.91 0.71	1.00 0.99 0.97 0.98 0.97 0.86	1.00 1.00 1.00 1.00 1.00 0.97	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	
h 0°	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	f _t
1 2 3 4 5 6	0.84 0.78 0.70 0.30 0.86 0.70	0.97 0.96 0.94 0.93 0.94 0.83	1.00 0.99 0.99 0.99 0.99 0.99	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	,

6.9 Matrium Na.

Querschnittstyp	Gruppe	Berechnungsart
σ [∞] _γ , σ [∞] e	1-26	(2.84)
σ _{in}	1-6	(2.84)
σ_{t}^{∞}	1–6 7–26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
$\sigma_{e,h \rightarrow h+1}^{\infty} = \sigma_{be,h}^{\infty}$	1 - 7 8 - 26	(3.14),(3.9),(3.27),(3.28) (3.8),(3.9)
fn	1-14 15-26	aus Meßdaten nach (2.7), (2.4),(2.5),(2.84) f _n = 1
f _y , f _t	6 - 14 1 - 5 15-26	vom ABN-Satz übernommen } f _γ = 1, f _t = 1
^σ in,h→h+i	1-6	(4.1)

(n,p)- und (n,α) -Reaktionen sind in σ_{γ} enthalten. Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation |6|.

	NA											
h	E _h	σ _t	σγ	σ _{in}	٥	μ	0 be					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 4.00E-01 4.65E-02 2.15E-02 1.00E-01 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07	1.61E 00 2.01E 00 2.38E 00 2.95E 00 4.12E 00 4.12E 00 4.41E 00 4.41E 00 3.42E 00 4.53E 00 3.99E 00 4.65E 00 8.11E 00 3.11E 00 3.11E 00 3.11E 00 3.11E 00 3.12E 00 3.15E 00 3.15E 00 3.21E 00 3.21E 00 3.31E 00	4.98E-02 5.90E-03 1.15E-04 1.32E-04 2.00E-04 3.51E-04 6.14E-04 7.09E-04 1.22E-03 7.84E-04 2.28E-03 8.00E-02 1.22E-02 5.79E-03 6.10E-03 7.83E-03 1.07E-02 1.53E-02 2.22E-02 3.24E-02 4.78E-02 6.94E-02 1.01E-01	in 9.12E-01 8.57E-01 6.93E-01 5.83E-01 4.71E-01 1.42E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6.50E-01 1.14E 00 1.68E 00 2.37E 00 3.65E 00 4.27E 00 4.01E 00 3.42E 00 4.53E 00 3.99E 00 4.64E 00 8.11E 00 1.38E 02 8.83E 00 3.42E 00 3.10E 00 3.10E 00 3.10E 00 3.10E 00 3.12E 00 3.14E 00 3.14E 00 3.14E 00 3.12E 00 3.14E 00 3.12E 00 3.14E 00 3.12E 00 3.14E 00 3.12E 00 3.14E	6.19E-01 5.74E-01 4.89E-01 3.26E-01 2.78E-01 1.02E-01 5.69E-02 2.90E-02	be 1.38E-01 1.89E-01 2.43E-01 3.40E-01 5.97E-01 4.92E-01 6.27E-01 3.65E-01 3.65E-01 3.87E-01 5.07E-01 1.07E 3.75E-01 2.48E-01 2.48E-01 2.43E-01 2.43E-01 2.43E-01 2.43E-01 2.58E-01 2.58E-01 2.14E-01 3.02E-01 2.58E-01					
26	2.15E-07	3.56E 00	2.85E-01	0.	3.28E 00	2.90E-02 2.90E-02	0.					

σ _{in, h→h+i} [barn]										
h	0	1	2	3	4	5	6	7		
1 2 3 4 5 6	0.01 0.12 0.23 0.30 0.11 0.00	0.07 0.17 0.21 0.27 0.33 0.10	0.17 0.22 0.10 0.00 0.03 0.03	0.28 0.17 0.10 0.01 0.00 0.01	0.21 0.12 0.04 0.00	0.11 0.04 0.01	0.04 0.01	0.01		
∇_0 0 10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 5										
7 8 9 10 13	0.75 0.70 0.64 0.35 0.26	0.88 0.85 0.79 0.52 0.31	0.98 0.98 0.94 0.84 0.56	1.00 1.00 0.99 0.98 0.87	1.00 1.00 1.00 1.00 0.98	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00		·γ	
h Oo	0	10 ¹	10 ²	10 ³	10 4	10 ⁵	10 ⁶		f _e	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.00 0.98 0.98 0.97 0.86 0.92 0.99 0.92 1.00 0.99 0.95 0.23 0.74	1.00 1.00 1.00 0.99 0.96 0.97 1.00 0.96 1.00 1.00 0.98 0.28 0.85	1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			
h °	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶		ft	
6 7 8 9 12 13 14	0.77 0.81 0.86 0.67 0.80 0.33 0.79	0.92 0.92 0.93 0.76 0.92 0.38 0.91	0.99 0.99 0.99 0.94 0.99 0.51 0.98	1.00 1.00 1.00 0.99 1.00 0.88 1.00	1.00 1.00 1.00 1.00 1.00 0.99 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00			

6.10 Aluminium Al.

Querschnittstyp	Gruppe	Berechnungsart		
σγ, σε	1-26	(2.84)		
σ _{in}	1=5	(2.84)		
σ_{t}^{∞}	1 5 6 26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$		
μ _e	1=26	(1.70)		
σe,h→h+1 ^{=σ} be,h	1 9 10 - -25	(3.14),(3.9),(3.27),(3.28) (3.8),(3.9)		
fn	1⊷12 13 - 26	aus Meßdaten nach (2.7), (2.4),(2.5),(2.84) f _n = 1		
f _γ , f _t	4-12 1-3 13-26	vom ABN-Satz übernommen } f _t = 1, f _y = 1		
^σ in,h→h+i	1 - 5	(4.1)		

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen.

Dokumentation |7|, |8|

				AL	ij		
h	E _h	σ _t	σγ	σ _{in}	0 _e	μ,	0 be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07 2.15E-07 2.15E-07	1.94E 00 2.23E 00 2.71E 00 2.94E 00 3.48E 00 4.01E 00 4.09E 00 5.57E 00 5.57E 00 5.50E C0 6.86E 00 9.92E-01 1.52E 00 1.41E 00 1.40E 00 1.40E 00 1.40E 00 1.40E 00 1.40E 00 1.40E 00 1.40E 00 1.40E 00 1.40E 00 1.42E C0 1.42E C0 1.42E 00 1.50E 00 1.57E 00	9.46E-02 2.29E-02 3.47E-03 3.83E-04 4.46E-04 8.51E-04 1.53E-03 3.60E-03 2.85E-03 8.90E-03 2.84E-03 6.17E-03 9.67E-03 1.30E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.40E-02 1.50E-02 3.07E-02 3.50E-02 3.50E-02 5.84E-02 9.33E-02 1.33E-01	8.58E-01 8.33E-01 5.33E-01 2.89E-01 9.83E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9.89E-01 1.37E 00 2.18E 00 2.65E 00 3.39E 00 4.01E 00 4.09E 00 5.56E 00 5.50E 00 6.85E 00 9.89E-01 1.52E 00 1.39E 00 1.44E 00 1.44E 00 1.44E 00 1.44E 00	6.32E-01 5.63E-01 4.09E-01 3.73E-01 3.13E-01 2.24E-01 1.09E-01 6.84E-02 4.22E-02 3.17E-02 2.64E-02 2.47E-02	1.95E-01 1.91E-01 3.65E-01 2.65E-01 4.96E-01 4.84E-01 5.76E-01 3.24E-01 2.69E-01 5.06E-02 9.62E-02 1.18E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-01 1.03E-02 9.21E-02 8.91E-02 9.04E-02 1.17E-01 1.07E-01 9.87E-02 8.09E-02 7.88E-02 0.

				σ _{ir}	n, h→h+i	[barn]	. <u> </u>	AL
h	0	1	2	3	4	5	6	7	······································
1 2 3 4 5	0.01 0.06 0.05 0.02 0.00	0.06 0.29 0.25 0.16 0.02	0.16 0.24 0.11 0.11 0.05	0.27 0.12 0.08 0.00 0.02	0.19 0.08 0.03 0.00 0.01	0.11 0.03 0.01	0.04 0.01	0.01	
h	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶		fy
8 9 10 12	0.80 0.40 0.23 0.09	0.90 0.70 0.56 0.25	0.98 0.95 0.87 0.60	1.00 0.99 0.98 0.92	1.00 1.00 1.00 0.99	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00		
h ⁰ °	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶		f _e
1 2 3 4 5 6 7 8 9 10 11 12	0.98 0.99 0.97 0.98 0.93 0.94 0.84 0.62 0.44 0.18 0.97 0.96	1.00 1.00 0.99 1.00 0.98 0.98 0.98 0.96 0.85 0.70 0.57 1.00 0.99	1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.94 0.89 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		-
h ⁰ °	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶		f _t
4 5 6 7 8 9 10 12	0.95 0.85 0.65 0.68 0.51 0.37 0.10 0.53	0.99 0.99 0.97 0.84 0.81 0.63 0.40 0.57	1.00 1.00 0.98 0.97 0.92 0.79 0.90	1.00 1.00 1.00 1.00 0.99 0.97 0.99	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00		

6.11 Chrom Cr.

Querschnittstyp	Gruppe	Berechnungeart
σ _γ , σ _e	1-26	(2.84)
"in	1-5	(2.84)
σ_t^{∞}	1 - 5 6 - 26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
$\sigma_{e,h \rightarrow h+1}^{\infty} = \sigma_{be,h}^{\infty}$	1-10 11-13 14-25	(3.14),(3.9),(3.27),(3.28) (3.8),(3.9) (3.14),(3.9),(3.13)
fn	1-13 14-26	aus Meßdaten nach (2.7), (2.4),(2.5),(2.84) f _n = 1
f _t , f _γ	8-14 1-7 15-26	vom ABN-Satz übernommen } $f_t = 1, f_{\gamma} = 1$
^σ in,h→h+i	1-5	(4.1)

(n,p)-Reaktionen sind in σ_{γ} enthalten.

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen.

Dokumentation [6]

		en normaliset and an anno 1999 an Lanachara an Anno 1999 ann an Anno 1999 ann an Anno 1999 ann an Anno 1999 an		C P	· · · · · · · · · · · · · · · · · · ·	······································	
					-		
h	E _h	σ _t	σγ	Ø _{in}	0 _e	μ	0 _{be}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	L.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-05 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07	3.39E 00 3.70E 00 3.65E 00 3.32E 00 2.99E 00 3.07E 00 2.81E 00 6.30E 00 6.49E 00 3.16E 00 4.37E 00 1.70E 01 1.19E 01 4.38E 00 4.31E 00 4.31E 00 4.31E 00 4.32E 00 4.34E 00	2.75E-02 3.01E-03 1.31E-03 2.19E-03 3.74E-03 4.00E-03 4.37E-03 5.08E-03 4.50E-03 7.23E-03 1.14E-02 3.77E-02 3.73E-02 6.01E-02 2.21E-02 2.86E-02 4.15E-02 5.90E-02 8.83E-02 1.30E-01 1.87E-01 2.77E-01 4.04E-01 5.82E-01	1.19E 00 1.30E 00 1.01E 00 6.27E-01 7.16E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.18E 00 2.39E 00 2.64E 00 2.69E 00 2.92E 00 3.06E 00 6.30E 00 6.30E 00 6.48E 00 3.15E 00 4.36E 00 1.70E 01 1.19E 01 4.32E 00 4.28E 00	μ e 8.36E-01 7.75E-01 5.49E-01 3.27E-01 1.72E-01 1.59E-01 1.28E-01 6.26E-02 4.07E-02 2.47E-02 1.28E-02	9.59E-02 8.34E-02 1.75E-01 1.39E-01 2.54E-01 2.14E-01 1.57E-01 4.52E-01 1.10E-01 4.52E-01 1.65E-01 1.64E-01 1.49E-01 1.49E-01 1.43E-01 2.19E-01 1.50E-01 1.50E-01 1.19E-01
26	2.15E-07	5.93E 00	1.65E 00	0.	4.28E 00	1.28E-02	0.

				σ _{in}	, h +i	[barn]	······		CR
hi	0	1	2	3	4	5	6	7	8	
1 2 3 4 5	0.01 0.07 0.02 0.01 0.02	0.07 0.42 0.27 0.21 0.04	0.20 0.30 0.62 0.26 0.02	0.53 0.25 0.06 0.11 0.00	0.27 0.17 0.03 0.03	0.17 0.06 0.01 0.01	0.06 0.02	0.03 0.01	0.01	
h °	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶			f _Y
8 9 10 11 12 13 14 15	0.59 0.56 0.48 0.39 0.61 0.54 0.23 0.17	0.80 0.78 0.71 0.62 0.82 0.76 0.40 0.30	0.98 0.98 0.98 0.96 0.97 0.91 0.75 0.81	1.00 1.00 1.00 1.00 0.98 0.96 0.93	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00			
h ⁰ °	0	10 ¹	10 ²	10 ³	10 4	10 ⁵	10 ⁶			f _e
1 2 3 4 5 6 7 8 9 10 11 12 13	1.00 1.00 0.97 0.95 0.82 0.83 0.68 0.33 0.72 0.86 0.92 0.75	1.00 1.00 0.99 0.99 0.96 0.96 0.96 0.89 0.68 0.96 0.95 0.96 0.96 0.86	1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			
h 00	0	10 ¹	10 ²	10 ³	10 4	10 ⁵	10 ⁶		e e e e e e e e e e e e e e e e e e e	f _t
8 9 10 11 12 13	0.69 0.35 0.88 0.81 0.79 0.50	0.87 0.56 0.96 0.93 0.92 0.73	0.97 0.89 0.99 0.99 0.97 0.94	1.00 0.99 1.00 1.00 1.00 0.99	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00			

6.12 Eisen Fe.

	have a second	
Querschnittstyp	Gruppe	Berechnungsart
σ _γ , σ _e	1-26	(2,84)
σin	1-5	(2.84)
σ_t^{∞}	1-5	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} \div \sigma_{e}^{\infty} + \sigma_{i}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
σe,h→h+1 ^{=σ} be,h	1-8 9-14 15-25	(3.14),(3.9),(3.27),(3.28) (3.8),(3.9) (3.14),(3.9),(3.13)
fn	1 - 14 15 - 26	aus Meßdaten nach (2.7), (2.4),(2.5),(2.84) f _n = 1
f _γ , f _t	2=14 1 15=26	vom ABN-Satz übernommen } f _γ = 1, f _t = 1
^σ in _s h→h+i	1– 5	(4.1)

(n,p)- und (n, α)-Reaktionen sind in σ_{γ} enthalten. Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation [6]

Wichtungsspektrum Abb. I.

				FE			
h	E _h	σ,	σγ	0 _{in}	0 _e	μ _e	0 _{be}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 4.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07 2.15E-07	3.45E 00 3.62E 00 3.39E 00 2.97E 00 2.50E 00 3.07E 00 3.00E 00 3.83E 00 5.30E 00 1.28E 01 3.74E 00 1.32E 01 1.32E 01 1.32E 01 1.15E 01 1.15E 01 1.15E 01 1.15E 01 1.16E 01 1.16E 01 1.19E 01 1.21E 01 1.27E 01	7.61E-02 2.76E-02 7.56E-03 2.43E-03 3.41E-03 5.08E-03 5.75E-03 6.52E-03 2.17E-02 2.80E-02 1.85E-02 1.85E-02 1.85E-02 1.14E-02 2.33E-01 1.54E-02 2.24E-02 3.27E-02 3.27E-02 1.04E-01 1.54E-01 2.27E-01 3.30E-01 4.75E-01 6.96E-01 1.35E 00	1.30E 00 1.36E 00 1.01E 00 7.03E-01 3.18E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.07E 00 2.24E 00 2.37E 00 2.26E 00 2.18E 00 3.07E 00 2.99E 00 3.82E 00 5.27E 00 1.28E 01 3.73E 00 1.32E 01 5.53E 00 7.61E 00 9.83E 00 1.09E 01 1.14E 01	8.30E-01 7.26E-01 5.03E-01 3.00E-01 2.43E-01 1.86E-01 8.34E-02 3.80E-02 1.99E-02 1.30E-02 1.30E-02 1.19E-02	9.06E-02 9.33E-02 1.51E-01 1.30E-01 1.72E-01 2.45E-01 1.72E-01 1.72E-01 1.77E-01 5.12E-02 2.68E-01 2.11E-01 2.27E-01 3.30E-01 3.68E-01 3.61E-01 3.68E-01 3.53E-01 5.42E-01 4.09E-01 3.71E-01 2.90E-01 0.

	σ _{in, h→h+i} [barn]									FE
n	0	1	2	3	4	5	6	7	8	
1 2 3 4 5 6	0.01 0.12 0.16 0.12 0.01 0.00	0.08 0.22 0.54 0.36 0.13 0.00	0.18 0.31 0.13 0.20 0.13 0.00	0.38 0.33 0.12 0.02 0.04	0.32 0.23 0.04 0.01 0.01	0.21 0.10 0.03	0.08 0.03	0.04 0.01	0.01	

n Oo	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	fγ
2	0.07	0 00	1 00	1 00	1 00	1.00	1 00	
2	0.05	0 00	1.00	1.00	1.00	1.00	1.00	
5	0.75	0 00	1.00	1.00	1.00	1.00	1 00	
5	0.79	0.90	0.99	1.00	1.00	1.00	1.00	
6	0.63	0.82	0.98	1.00	1.00	1.00	1.00	
7	0.62	0.82	0.98	1.00	1.00	1.00	1.00	
8	0.50	0.79	0.97	1.00	1.00	1.00	1.00	
9	0.53	0.70	0.90	0.99	1.00	1.00	1.00	
10	0.39	0.52	0.66	0.94	0.99	1.00	1.00	
11	0.75	0.88	0.98	1.00	1.00	1.00	1.00	
12	0.60	0.76	0.95	0.99	1.00	1.00	1.00	
13	0.77	0.88	0.98	1.00	1.00	1.00	1.00	
14	0.37	0.49	0.78	0.97	1.00	1.00	1.00	
L	Ĺ	l		<u> </u>	L			
h ⁰ 0	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	f _e
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
3	0.99	1.00	1.00	1.00	1.00	1.00	1.00	
4	0.98	1.00	1.00	1.00	1.00	1.00	1 00	
2	0.91	0.90	1.00	1.00	1.00	1.00	1 00	
07	0.02	0.90	1.00	1.00	1 00	1.00	1.00	
0	0.05	0.90	0.98	1.00	1.00	1.00	1.00	
0	0.65	0.83	0.96	1.00	1.00	1.00	1.00	
10	0.23	0.54	0.83	0.97	1.00	1.00	1.00	
11	0.83	0.95	0.99	1.00	1.00	1.00	1.00	
12	0.80	0.89	0.97	1.00	1.00	1.00	1.00	
13	0.99	1.00	1.00	1.00	1.00	1.00	1.00	
14	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
				<u> </u>	l			
n D	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	ft
2	0 04	0.00	1.00	1.00	1.00	1.00	1.00	
2	0.90	0.00	1.00	1.00	1.00	1.00	1.00	
	0.74	0.04	0.00	1.00	1.00	1.00	1.00	
5	0.61	0.01	0.97	1.00	1.00	1.00	1.00	
	0.45	0.82	0.96	1.00	1.00	1.00	1.00	
7	0.55	0.92	0.98	1.00	1.00	1.00	1.00	
8	0.39	0.85	0.97	1.00	1.00	1.00	1.00	
9	0.34	0.77	0.95	0.99	1.00	1.00	1.00	
10	0.03	0.25	0.53	0.88	0.99	1.00	1.00	
12	0.86	0.98	1.00	1.00	1.00	1.00	1.00	
		<u> </u>	1		[-	

6.13 Nickel Mi.

Querschnittstyp	Cruppe	Berechnungsart
σγ,σε	1-26	(2.84)
σin	1-4	(2,84)
°t €	1-4 5-26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}^{\infty}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
σ _{e,h→h+1} =σ _{be,h}	1-8 9-13 14-25	(3.14),(3.9),(3.27),(3.28) (3.8),(3.9) (3.14),(3.9),(3.13)
f _n	1-13 14-26	aus Meßdaten nach (2.7), (2,4),(2.5),(2.84) f _n = 1
^f γ, ^f t	2-13 1 14-26	vom ABN-Satz übernommen } $f_{\gamma} = 1, f_{t} = 1$
^σ in,h→h+i	1-4	(4.1)

(n,p)-Reaktionen sind in σ_{γ} enthalten.

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation [6]

Wichtungsspektrum Abb. I.

6427

			NI	· · ·			
h	E _h	σ _t	σγ	σ _{in}	σ _e	μ _e	0 be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07 2.15E-07	3.53E 00 3.52E 00 3.14E 00 3.08E 00 3.10E 00 3.10E 00 3.46E 00 5.23E 00 6.11E 00 8.39E 00 1.09E 01 4.24E 01 1.43E 01 2.07E 01 1.49E 01 1.72E 01 1.72E 01 1.72E 01 1.75E 01 1.76E 01 1.76E 01 1.80E 01 1.84E 01 1.95E 01	4.68E-01 3.46E-01 1.53E-01 3.27E-02 8.07E-03 7.94E-03 8.35E-03 9.52E-03 1.04E-02 1.12E-02 1.30E-01 1.75E-02 4.09E-02 2.26E-02 2.80E-02 2.80E-02 5.99E-02 8.72E-02 1.28E-01 1.89E-01 2.77E-01 4.11E-01 6.00E-01 8.63E-01 1.27E 00 2.45E 00	9.37E-01 1.14E 00 9.97E-01 4.22E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.13E 00 2.03E 00 1.99E 00 2.62E 00 3.09E 00 3.45E 00 5.23E 00 6.10E 00 8.38E 00 1.09E 01 4.22E 01 1.43E 01 1.43E 01 1.43E 01 1.43E 01 1.55E 01 1.68E 01 1.72E 01	8.18E-01 7.36E-01 4.33E-01 3.37E-01 1.30E-04 1.29E-01 7.09E-02 5.79E-02 2.12E-02 1.14E-02	8.67E-02 8.01E-02 1.13E-01 1.66E-01 2.05E-01 1.64E-01 3.79E-01 2.00E-01 1.88E-01 5.93E-01 4.33E-01 1.10E 00 5.30E-01 5.31E-01 5.31E-01 5.58E-01 5.76E-01 5.07E-01 5.07E-01 5.32E-01 4.24E-01 4.15E-01

				σ _i	n, h - h	₊i [bar	n]			NI
n	0	1	2	3	4	5	6	7	8	
1 2 3 4	0.01 0.03 0.03 0.00	0.04 0.25 0.36 0.11	0.13 0.27 0.31 0.17	0.27 0.29 0.17 0.08	0.24 0.19 0.09 0.04	0.16 0.08 0.03 0.02	0.06 0.03 0.01	0.02 0.01	0.01	
No.		1	2			5	6			
h _0	0	10	10-	10	10	10	10*			tγ
2 3 4 5 6 7 8 9 10 11 12 13	0.98 0.96 0.94 0.88 0.67 0.66 0.53 0.59 0.57 0.32 0.85 0.54	0.99 0.98 0.99 0.96 0.89 0.87 0.81 0.78 0.73 0.62 0.90 0.64	1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98 0.93 0.84 0.98 0.98	1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			
h Oo	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶			f _e
1 2 3 4 5 6 7 8 9 10 11 12 13	1.00 1.00 0.99 1.00 0.98 0.95 0.89 0.76 0.62 0.77 0.70 0.86 0.95	1.00 1.00 1.00 0.99 0.99 0.96 0.91 0.81 0.87 0.76 0.91 0.96	1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.97 0.90 0.98 0.99	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			
h ⁰ 0	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶			f _t
2 3 4 5 6 7 8 9 10 11 13	0.96 0.94 0.86 0.53 0.47 0.36 0.53 0.83 0.13 0.87	0.98 0.99 0.97 0.94 0.83 0.77 0.77 0.77 0.78 0.90 0.30 0.89	1.00 1.00 0.99 0.99 0.95 0.95 0.95 0.95 0.95 0	1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 0.92	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			

6.14 U 235.

Querschnittstyp	Gruppe	Berechnungsart
σ_{in}	1 2 - 10	vom ABN-Satz übernommen (2.84)
σ γ	1 - 18 19 - 25 . 26	(2.84) aus Resonanzparametern nach (2.6),(2.14),(2.15), (2.19),(2.20) (2.84)
σ [∞] σ [∞] e	1-26	(2.84)
σt	1–10 11–26	$\sigma_{t}^{\infty} = \sigma_{r}^{\infty} + \sigma_{e}^{\infty} + \sigma_{f}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{r}^{0} + \sigma_{e}^{0} + f$
μ _e	1-26	(1.70)
$\sigma_{e,h \rightarrow h+1}^{\infty} = \sigma_{be,h}^{\infty}$	1 - 12 13 - 17 18 - 25	(3.14),(3.9),(3.27),(3.28) (3.14),(3.9),(3.13) (3.8),(3.9)
^f γ ^{, f} f ^{, f} e	1-8 26 9-17 18-25	$\begin{cases} f_{\gamma} = 1, f_{f} = 1, f_{e} = 1 \\ (2.28), (2.68), (2.61) \\ (2.9), (2.12), (2.11) \end{cases}$
f _t	1-10 24-26 11-23	} f _t = 1 vom ABN-Satz übernommen
^σ in,h→h+i	1 2 - 10	vom ABN-Satz übernommen (4.1)
ν	1-26	(1.64)

 σ_{2n} ist in der ersten Gruppe in σ_{in} enthalten. Die Kerndaten sind dem Karlsruher Kerndatenband entnommen.

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation [6]

					e el						
U 235											
h	E _h	σ	σγ	σ _{in}	0 _e	μ	0 be	ν	Ø _f		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 4.00E-01 4.65E-02 2.15E-02 1.00E-01 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07 2.15E-07	6.13E 00 7.35E 00 7.35E 00 7.74E 00 7.00E 00 6.74E 00 7.60E 00 9.12E 00 1.11E 01 1.26E 01 1.40E 01 1.54E 01 1.69E 01 1.91E 01 2.26E 01 2.86E 01 3.77E 01 5.01E 01 6.49E 01 1.01E 02 1.22E 02 9.71E 01 3.68E 01 5.82E 01 8.47E 01 1.93E 02 3.09E 02	9.98E-03 1.92E-02 3.25E-02 5.50E-02 1.03E-01 1.48E-01 2.27E-01 3.75E-01 5.69E-01 7.94E-01 1.02E 00 1.28E 00 2.18E 00 3.08E 00 4.37E 00 8.19E 00 1.67E 01 2.15E 01 4.84E 01 5.95E 01 3.42E 01 7.54E 00 1.26E 01 9.43E 00 2.83E 01 4.77E 01	1.03E 00 2.06E 00 1.99E 00 1.63E 00 1.40E 00 1.12E 00 7.08E-01 4.51E-01 1.53E-01 1.87E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3.44E 00 4.09E 00 4.43E 00 4.01E 00 4.02E 00 5.15E 00 6.87E 00 8.71E 00 1.01E 01 1.10E 01 1.10E 01 1.16E 01 1.17E 01 1.31E 01 1.31E 01 1.32E 01 1.33E 01 1.33E 01 1.37E 01 1.20E 01 1.22E 01 1.37E 01 1.54E 01 1.54E 01	8.24E-01 7.73E-01 7.04E-01 5.30E-01 4.49E-01 3.60E-01 2.37E-01 1.39E-01 6.37E-02 6.51E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.84E-03	3.60E-02 2.98E-02 4.42E-02 3.27E-02 5.08E-02 5.64E-02 8.22E-02 9.49E-02 1.06E-01 1.04E-01 1.09E-01 1.13E-01 1.13E-01 1.11E-01 1.11E-01 1.11E-01 1.01E-01 9.19E-02 8.50E-02 8.58E-02 1.28E-01 1.10E-01 1.07E-01 9.29E-02 9.40E-02	3.67E 00 3.16E 00 2.79E 00 2.64E 00 2.55E 00 2.49E 00 2.49E 00 2.45E 00 2.45E 00 2.43E 00	1.65E 00 1.19E 00 1.28E 00 1.30E 00 1.22E 00 1.32E 00 1.32E 00 1.53E 00 1.53E 00 2.22E 00 2.78E 00 3.78E 00 3.78E 00 5.16E 00 7.42E 00 1.11E 01 1.63E 01 2.02E 01 3.88E 01 4.90E 01 1.71E 01 3.20E 01 6.09E 01 1.49E 02 2.45E 02		

. .

U 235

ft

	•			-					Υ.
h O ₀	т [•к]	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	-
11	300.0 900.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
12	300.0 900.0 2100.0	0.96	0.99 0.99	1.00 1.00 1.00	1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00	
13	300.0 900.0 2100.0	0.93 0.97 0.99	0.96 0.99 0.99	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
14	300.0 900.0 2100.0	0.88 0.94 0.97	0.92 0.97 0.99	0.96 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
15	300.0 900.0 2100.0	0.82 0.93 0.97	0.88 0.95 0.98	0.93 0.97 0.99	0.99 1.00 1.00	1.00	1.00 1.00 1.00	1.00 1.00 1.00	
16	300.0 900.0 2100.0	0.73 0.86 0.93	0.78 0.89 0.95	0.85 0.94 0.98	0.98 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
17	300.0 900.0 2100.0	0.62	0.70 0.83 0.91	0.80 0.87 6.94	0.97 0.98 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
18	300.0 900.0 2100.0	0.50 0.58 0.66	0.56 0.64 0.72	0.70 0.75 0.80	0.95 0.96 0.97	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
19	300.0 900.0 2100.0	0.39 0.42 0.45	0.42 0.45 0.48	0.57 0.59 0.61	0.90 0.91 <u>0.92</u>	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	
20	300.0 900.0 2100.0	0.32 0.33 0.34	0.36 0.37 0.38	0.46 0.47 0.48	0.84 0.85 0.85	0.98 0.98 0.98	1.00 1.00 1.00	1.00 1.00 1.00	
21	300.0 900.0 2100.0	0.29 0.29 0.30	0.31 0.32 0.32	0.42 0.43 0.44	0.81 0.82 0.83	0.97 0.98 0.98	1.00 1.00 1.00	1.00 1.00 1.00	
22	300.0 900.0 2100.0	0.•64 G.64 C.64	0.68 0.68 0.68	0.82 0.82 0.82	0.97 0.97 0.97	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
23	300.0 900.0 2100.0	0.63 0.63 0.63	0.65 0.65 0.65	0.80 0.80 0.80	0.97 0.97 0.97	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	

		fe							
h Oo	т[°К]	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	
9	300.0 900.0 2100.0	1.00 1.00 1.00	1) 1.00 1.0	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.0 1.00 1.0	1.00 1.00 1.00	
10	300.0 900.0 2100.0	1.00	1.30 1.30	1.00 1.00	1.00 1.00	1.00		1.00 1.00 1.00	
11	300.0 900.0	1.00	1.00	1.00	1.30	1.00 1.00	1.00 1.00	1.00	
12	300.0 900.0	1.00	1.00	1.00	1.00	1.00	1	1.00 1.00	
13	300.0 900.0	1.00 0.99 2.99	1 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.00	1. 1.70 1.00	1.00 1.00	
14	2100.0 300.5 900.0	1.00 0.98 0.99	1.00 0.99 0.99	1.00 0.99 1.00	1.00 1.00 1.00	$\frac{1.00}{1.01}$	1.) 1.) 1.)	1.00 1.00 1.00	
15	2100.0 300.0 993.0	0.99 0.98 2.98	0.99 0.98 0.99	1.00 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.2	1.00 1.00	
16	2100.0 300.0 200.0	0.99	3.99 7.97 7.98	0.99	1.00 0.99 1.00	1.00	1.70	1.00	
17	2100.0 300.0	0.98	0.98 0.97	0.99	1.00 0.99	1.00	1.00	1.00	
	2100.0 300.0	0.97	3.97	0.99	0.99	1.00	1.00	1.00	
	900.0 2100.0 300.0	0.95 0.96 0.93	0.96 0.96 7.94	0.98 0.98 0.96	1.00 0.99	1.00 1.00	1.00 1.77 1.52	1.00	
19	900.0 2190.0 390.0	0.94 0.95 0.89	0.95 0.96 0.89	3.97 0.97 9.92	0.99 <u>7.99</u> 1.96	1.00 1.00 0.99	1.00 <u>1.00</u> 1.00	1.00 <u>1.00</u> 1.00	
20	903.0 2100.0	0.89	7.90 0.91	0.92 0.93	0.97 0.98	*•99 <u>1•00</u>	1.	1.00 <u>1.00</u>	
21	900.0 2100.0	0.95 0.95	3.96 2.96	0.97 0.97	0.99	1.00	1.	1.00	
22	906.0 2100.0	1.00 1.00 1.00	1.20 1.20	1.00	1.30 1.30 1.00	1.00 1.00 1.00	1.02	1.00	
23	300.0 990.0 2100.0	0.99 €.99 0.99	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.02 1.52	1.00 1.00 1.00	1.10 1.20 1.20	1.00 1.00 1.00	
24	300.0 900.0 2100-0	1.00 1.00 1.00	1.30 1.30 1.96	1.00 1.00 1.00	1.00 1.02 1.00	1.00 1.00 1.00	1.2	1.00 1.00 1.00	
25	300.0 900.0 2100.0	0.99 0.99 0.99	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.03 1.03 1.02	1. 1. 1.	1.00 1.00 1.00	

U 235

fγ

			3						·
h Oo	т [°к]	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	
	200 5	1 00	1 00	1 20	1.30	1	1	1	
	300.0		1.00	1.00					
7	2100.0	1.00		1.00	1 00	1 00	1.00	1 00	
	300.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
10	900.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	2100.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
11	900.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	2100.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.95	0.96	0.99	1.00	1.00	1.00	1.00	1
12	900.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	300.0	0.90	0.93	0.98	1.00	1.00	1.00	1.00	
13	900.0	0.94	0.95	0.99	1.00	1.00	1.00	1.00	
	2100.0	0.97	0.97	0.99	1.00	1.00	1.00	1.00	
	300.0	0.83	0.88	0.95	0.99	1.00	1.00	1.00	
14	900.0	0.88	0.92	0.97	1.00	1.00	1.00	1.00	
	2100.0	0.93	0.94	0.98	1.00	1.00	1.00	1.00	
	300.0	0.75	0.80	0.93	0.99	1.00	1.00	1.00	
15	900.0	0.80	0.85	0.94	0.99	1.00	1.00	1.00	
	2100.0	0.80	0.89	0.90	1.00	1.00	1.00	1.00	
16	300.0	0.00	0.13	0.00	0.91	1.00	1.00	1.00	
10	2100.0	0 77	0.11	0.02	0.90	1.00	1.00	1.00	
	2100.0	0.62	0.66	0.81	0.94	0.99	1.00	1.00	<u> </u>
17	900-0	0.65	0.70	0.86	0.96	1.00	1.00	1.00	
	2100-0	0.69	0.73	0.89	0.98	1.00	1.00	1.00	
	300.0	0.42	0.49	0.71	0.94	0.99	1.00	1.00	
18	900.0	0.52	0.59	0.79	0.96	0.99	1.00	1.00	
	2100.0	0.60	0.67	0.84	0.97	0.99	1.00	1.00	
	300.0	0.35	0.40	0.62	0.90	0.98	1.00	1.00	
19	900.0	0.41	0.47	0.68	0.92	0.99	1.00	1.00	
	2100.0	0.49	0.55	0.75	0.95	1.00	1.00	1.00	
	300.0	0.30	0.33	0.48	0.78	0.96	0.99	1.00	
20	900.0	0.35	0.38	0.54	0.84	0.97	0.99	1.00	
	2100.0	0.41	0.45	0.61	0.87	0.98	0.99	0.99	
	300.0	0.29	0.33	0.51	0.82	0.97	0.99	1.00	
21	900.0	0.32	0.37	0.55	0.85	0.97	0.99	0.99	
·	2100.0	0.38	0.42	0.61	0.88	0.98	0.99	0.99	
-	300.0	0.53	0.59	0.78	0.96	1.00	1.00	1.00	
22	900.0	0.22		0.01	1.00	1.00		1.00	
	2100.0	0.60	0.69	0.00	1.00	n 00	1 00	1.00	
22		0.04	0.00	0.85	0.94	0.00	1.00	0.00	
23	2100.0	0.60	0.73	0.86	0.96	0.98	0.98	0.98	
	300-0	0.98	0.98	0.99	1.00	1.00	1.00	1.00	
-24	500.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
- °	2100.0	1.00	1.00	1.00	1.00	1.00	1.30	1.00	1
	300-0	9.86	0.87	0.91	0.98	1.00	1.90	1.00	f
25	900-0	0.86	0.87	0.91	0.98	1.00	1.00	1.00	
	2100.0	0.86	0.87	0.91	0.98	0.99	0.99	1.00	
									l

×, · · ·

			f _f						
h 00	Т[°К]	0	101	10 ²	10 ³	104	10 ⁵	10 ⁶	
9	300.0 900.0 2100.0	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
10	300.0 900.0 2100.0	0.99 1.00 1.00	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
11	300.0 900.0 2100.0	0.97 0.99 1.00	0.98 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
12	300.0 900.0 2100.0	0.94 0.97 0.98	0.96 0.98 0.99	0.99 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
13	300.0 900.0 2100.0	0.90 0.94 0.97	0.93 0.95 0.97	0.98 0.99 0.99	1.00 1.00 1.30	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
14	300.0 900.0 2100.0	0.83 0.88 0.93	0.88 0.92 0.94	0.95 0.97 0.98	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
15	300.0 900.0 2100.0	0.76 0.81 0.86	0.82 0.86 0.90	0.94 0.94 0.96	0.99 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
16	300.0 900.0 2100.0	0.70 0.73 0.78	0.75 0.78 0.82	0.89 0.92 0.93	0.97 0.98 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
17	300.0 900.0 2100.0	0.66 0.68 0.70	0.69 0.72 0.75	0.84 0.87 0.89	0.94 0.96 0.98	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
18	300.0 900.0 2100.0	0.45 0.54 0.62	0.51 0.60 0.67	0.73 0.80 0.84	0.94 0.96 0.97	0.99 0.99 0.99	1.00 1.00 0.99	1.00 1.00 0.99	
19	300.0 900.0 2100.0	0.37 0.43 0.50	0.42 0.49 0.56	0.63 0.69 0.75	0.90 0.92 0.94	0.98 0.99 0.99	1.30 1.00 1.00	1.00 1.00 1.00	
20	300.0 900.0 2100.0	0.38 0.44 0.50	0.42 0.48 0.54	0.56 0.62 0.68	0.81 0.86 0.89	0.97 0.98 0.98	0.99 0.99 0.99	1.00 1.00 1.00	
21	300.0 900.0 2100.0	0.27 0.29 0.33	0.31 0.33 0.37	0.47 0.50 0.54	0.79 0.81 0.84	0.97 0.97 <u>0.98</u>	1.00 0.99 1.00	1.00 1.00 1.00	
22	300.0 900.0 2100.0	0.59 0.61 0.63	0.66 0.67 0.70	0.84 0.85 0.87	0.97 0.98 0.98	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
23	300.0 900.0 2100.0	0.65 0.66 0.68	0.69 0.70 0.71	0.84 0.84 0.85	0.97 0.97 0.96	1.00 0.99 0.99	1.00 0.99 0.99	1.00 1.00 0.99	
24	300.0 900.0 2100.0	0.97 0.98 0.98	0.97 0.98 0.99	0.99 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
25	300.0 900.0 2100.0	0.88 0.88 0.88	0.89 0.89 0.89	0.92 0.93 0.93	0.98 0.98 0.98	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	

and the second second

	$\sigma_{in, h \rightarrow h+i} [barn]$ U 235											
hi	0	t	2	3	4	5	6	7	8	9		
1 2 3 4 5 6 7 8 9 10	0.00 0.02 0.10 0.19 0.20 0.41 0.43 0.16 0.08 0.02	0.01 0.09 0.28 0.33 0.52 0.41 0.27 0.22 0.06	0.05 0.38 0.55 0.53 0.38 0.21 0.01 0.06	0-25 0-58 0-56 0-37 0-20 0-07 0-00 0-02	0.43 0.55 0.31 0.15 0.08 0.02	0.56 0.28 0.13 0.06 0.02	0.35 0.12 0.04 0.02	0.14 0.04 0.01	0.04 0.01	0.01		

6.15 U 238

Querschnittstyp	Gruppe	Berechnungsart
σ _{in}	1 2 - 9	vom ABN-Satz übernommen (2.84)
$\sigma_{f} = \sigma_{f}^{\infty}$	1-7	(2.84)
σ <mark>γ, σ</mark> e	1-13 14-21 22-26	(2.84) aus Resonanzparametern nach (2.6),(2.14),(2.15) (2.19),(2.20) (2.84)
σt	1-7 8-9 10-26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{f}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty}$
μ _e	1-26	(1.70)
σe,h→h+1 = σ be,h	1-12 13-14 15-26	(3.14),(3.9),(3.27),(3.28) (3.14),(3.9),(3.13) (3.8),(3.9)
f _y ,f _e	1-8 22-26 9-13 14-21	$f_{\gamma} = 1, f_{e} = 1$ $(2.28), (2.68), (2.61)$ $(2.9), (2.12), (2.11)$
ft	1-9 22-26 10-21	} f _t = 1 vom ABN-Satz übernommen
^σ in,h→h+i	1 2 - 9	vom ABN-Satz übernommen (4.1)
ν	1-7	(1.64)

 σ_{2n} ist in Gruppe 1 in σ_{in} enthalten.

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation [6]

	U 238											
h	E _h	σ _t	σγ	σ _{in}	Ø,	μ	σ _{be}	ν	σ _f			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 4.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07	6.32E 00 7.76E 00 7.93E 00 7.93E 00 7.36E 00 6.98E 00 7.89E 00 9.67E 00 1.15E 01 1.35E 01 1.35E 01 1.35E 01 1.78E 01 1.78E 01 1.99E 01 2.24E 01 2.03E 01 8.01E 01 4.02E 01 1.51E 02 1.57E 02 1.71E 02 7.49E 00 7.94E 00 8.20E 00	6.68E-03 1.19E-02 2.67E-02 6.62E-02 1.45E-01 1.34E-01 1.38E-01 1.90E-01 2.86E-01 4.71E-01 7.28E-01 1.03E 00 1.24E 00 1.59E 00 3.11E 00 4.03E 00 1.72E 01 1.59E 01 6.66E 01 1.12E 02 1.54E 02 6.80E-01 4.92E-01 5.81E-01 7.91E-01	1.80E 00 2.54E 00 2.62E 00 2.91E 00 2.41E 00 1.77E 00 1.23E 00 8.45E-01 2.45E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3.54E 00 4.63E 00 4.72E 00 3.91E 00 4.40E 00 5.99E 00 8.30E 00 1.05E 01 1.33E 01 1.33E 01 1.43E 01 1.43E 01 1.66E 01 1.66E 01 1.63E 01 6.29E 01 2.43E 01 8.41E 01 4.54E 01 1.76E 01 6.81E 00 7.23E 00 7.36E 00 7.41E 00	8.24E-01 7.73E-01 7.04E-01 5.80E-01 3.60E-01 3.60E-01 2.37E-01 1.39E-01 6.37E-02 6.46E-03 2.80E-03	be 3.94E-02 3.24E-02 4.61E-02 2.39E-02 5.57E-02 6.74E-02 9.63E-02 1.14E-01 1.26E-01 1.26E-01 1.25E-01 4.09E-02 1.69E-01 8.78E-02 1.33E-01 1.15E-01 8.95E-02 2.15E-01 6.70E-02 5.94E-02 5.55E-02 4.49E-02 4.41E-02	3.64E 00 3.17E 00 2.86E 00 2.66E 00 2.53E 00 2.45E 00 1.21E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9.67E-01 5.84E-01 5.72E-01 4.72E-01 2.72E-02 8.45E-04 3.27E-06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.			
20	2 • 13E-U /	9-91F 00	1.47E 00	U •	1.44E 00	2.80E-03	0.	0.	0 •			

U 238

ft

	۴t								
h Oo	т [° к]	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	
10	300.0 900.0 2100.0	0.97 0.98 0.99	0.98 0.99 1.00	1.00	1.00 1.00 1.00	1.00	1.00 1.00 1.00	1.00	
11	300.0 900.0 2100.0	0.92 0.93 0.94	0.96 0.98 0.99	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
12	300.0 900.0 2100.0	0.73 0.73 0.73	0.87 0.89 0.93	0.98 0.99 0.99	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
13	300.0 900.0 2100.0	0.60 0.61 0.62	0.75 0.78 0.82	0.88 0.90 0.94	0.95 0.96 0.97	0.99 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
14	300.0 900.0 2100.0	0.50 0.51 0.53	0.64 0.65 0.68	0.74 0.78 0.82	0.91 0.92 0.91	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	
15	300.0 900.0 2100.0	0.43 0.43 0.44	0.53 0.54 0.55	0.60 0.64 0.68	0.84 0.85 0.87	0.98 0.98 0.98	1.00 1.00 1.00	1.00 1.00 1.00	
16	300.0 900.0 2100.0	0.46 0.46 0.46	0.50 0.51 0.52	0.60 0.63 0.66	0.87 0.92 0.95	0.98 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	
17	300.0 900.0 2100.0	0.07 0.07 0.07	0.14 0.15 0.16	0.17 0.17 0.18	0.38 0.45 0.51	0.79 0.85 0.88	0.97 0.98 0.99	1.00 1.00 1.00	
18	300.0 900.0 2100.0	0.22 0.22 0.22	0.25 0.25 0.26	0.29 0.30 0.30	0.39 0.44 0.40	0.80 0.84 0.81	0.97 0.98 0.97	1.00 1.00 1.00	
19	300.0 900.0 2100.0	0.05 0.05 0.05	0.08	0.10 0.10 0.10	0.15 0.16 0.17	0.43 0.45 0.48	0.83 0.85 0.86	0.98 0.98 0.98	
20	300.0 900.0 2100.0	0.08 0.08 0.08	0.09 0.09 0.09	0.11 0.11 0.11	0.17 0.20 0.23	0.48 0.54 0.60	0.86 0.90 0.92	0.98 0.99 0.99	
21	300.0 900.0 2100.0	0.06 0.06 0.06	0.07 0.07 0.07	0.09 0.09 0.10	0.16 0.18 0.21	0.45 0.50 0.56	0.85 0.88 0.91	0.98 0.99 0.99	

U 238

f_e

					200				' e
h 00	т[°к]	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	
a	300.0	0.96	0.98	0.99	1.00	1.00	1.00	1.00	
	2100.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
10	300.0	0.94	0.96	0.99	1.00 1.00	1.00 1.00	1.00 1.00	1.00	
	2100.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
11	300.0	0.90	0.93	0.97 0.98	1.00	1.00	1.00	1.00	
	2100.0	0.94	0.96	0.99	1.00	1.00	1.00	1.00	
12	900.0	0.85	0.88	0.95	0.99	1.00	1.00	1.00	3
	2100.0	0.87	0.90	0.97	1.00	1.00	1.00	1.00 1.00	
13	900.0	0.76	0.79	0.90	0.98	1.00	1.00	1.00	
<u> </u>	300.0	0.18	0.82	0.92	0.99	0.99	1.00	1.00	
14	900.0 2100.0	0.52	0.65	0.79	0.95	0.99	1.00	1.00	
	300.0	0.52	0.56	0.68	0.89	0.98	1.00	1.00	
15	900.0 2100.0	0.55	0.59	0.72	0.92	0.99	1.00	1.00	··· · · ·
16	300.0 900.0 2100.0	0.70	0.72 0.73 0.75	0.78 0.81 0.83	0.91 0.94	0.99	1.00 1.00 1.00	1.00	
17	300.0	0.14	0.18	0.25	0.47	0.83	0.98	1.00	
18	300.0	0.36	0.39	0.44	0.58	0.90	0.98	0.99	
19	300.0	0.36	0.40	0.47	0.69	0.65	0.99	1.00	
	2100.0	0.11	0.13	0.19	0.37	0.78	0.97	0.99	
20	900-0 2100-0	0.15	0.16	0.20	0.38	0.72	0.96	0.99	
21	300.0 900.0 2100.0	0.50 0.51 0.51	0.51 0.52 0.52	0.54 0.55 0.56	0.64 0.67 0.70	0.85 0.89 0.92	0.97 0.99 0.99	0.99 1.00 1.00	
1		ł							

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					U	238				fγ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h O ₀	т [°К]	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	300.0	0.94	0.97	0.99	1.00	1.00		1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	2100.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		300.0	0.90	0.94	0.99	1.00	1.00	1.00	1.00	······································
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	900.0	0.94	0.96	0.99	1.00	1.00	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.96	0.98	1.00	1.00	1.00	1.00	1.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		300.0	0.83	0.88	0.97	1.00	1.00	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	900.0	0.89	0.93	0.98	1.00	1.00	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.93	0.70	0.99	1.00	1.00	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	900.0	0.80	0.86	0.95	1.00	1.00	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	**	2100.0	0.85	0.90	0.97	1.00	1.00	1.00	1.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		300.0	0.55	0.63	0.84	0.97	1.00	1.00	1.00	f
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	900.0	0.64	0.72	0.89	0.98	1.00	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.71	0.78	0.92	0.99	1.00	1.00	1.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		300.0	0.23	0.33	0.61	0.90	0.98	0.99	1.00	}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	900.0	0.28	0.41	0.70	0.93	0.99	0.99	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.35	0.49	0.76	0.95	0.99	0.99	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	300.0	0.16	0.22	0.46	0.84	0.9/	0.99	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2100.0	0.20	0.20	0.00	0.89	0.98	1.00	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·····	2100.0	0.12	0.16	0.36	0.76	0.99	1.00	1.00	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	900-0	0.15	0.21	0.45	0.83	0.97	0.99	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.19	0.26	0.53	0.87	0.98	0.99	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300.0	0.05	0.06	0.14	0.41	0.82	0.98	1.00	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	900.0	0.05	0.07	0.17	0.49	0.87	0.99	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.06	0.08	0.20	0.55	0.90	0.98	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300.0	0.05	0.06	0.14	0.39	0.81	0.97	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	900.0	0.05	0.07	0.16	0.47	0.86	0.98	0.99	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2100.0	0.00	0.08	0.19	0.35	0.91	0.02	1.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	900.0	0.03	0.04	0.07	0.24	0.69	0.95	1.00	
300.0 0.02 0.02 0.06 0.23 0.67 0.96 1.00 20 900.0 0.02 0.02 0.07 0.28 0.75 0.96 0.99 2100.0 0.02 0.02 0.08 0.35 0.82 0.98 1.00 300.0 0.03 0.04 0.08 0.27 0.70 0.94 0.98 21 900.0 0.03 0.04 0.09 0.32 0.78 0.98 1.00		2100.0	0.03	0.04	0.08	0.29	0.76	0.97	1.00	
20 900.0 0.02 0.02 0.07 0.28 0.75 0.96 0.99 2100.0 0.02 0.02 0.08 0.35 0.82 0.98 1.00 300.0 0.03 0.04 0.08 0.27 0.70 0.94 0.98 21 900.0 0.03 0.04 0.09 0.32 0.78 0.98 1.00		300.0	0.02	0.02	0.06	0.23	0.67	0.96	1.00	<u> </u>
2100.0 0.02 0.02 0.08 0.35 0.82 0.98 1.00 300.0 0.03 0.04 0.08 0.27 0.70 0.94 0.98 21 900.0 0.03 0.04 0.09 0.32 0.78 0.98 1.00	20	900.0	0.02	0.02	0.07	0.28	0.75	0.96	0.99	
300.0 0.03 0.04 0.08 0.27 0.70 0.94 0.98 21 900.0 0.03 0.04 0.09 0.32 0.78 0.98 1.00		2100.0	0.02	0.02	0.08	0.35	0.82	0.98	1.00	
21 900.0 0.03 0.04 0.09 0.32 0.78 0.98 1.00		300.0	0.03	0.04	0.08	0.27	0.70	0.94	0.98	
	21	900.0	0.03	0.04	0.09	0.32	0.78	0.98	1.00	
2100.0 0.03 0.04 0.10 0.39 0.84 0.99 1.00		2100.0	0.03	0.04	0.10	0.39	0.84	0.99	1.00	

	$\sigma_{in, h \rightarrow h+i} [barn]$ U 238											
h	0	1	2	3	4	5	6	7	8	9		
1 2 3 4 5 6 7 8 9	0.00 0.02 0.06 0.18 1.29 1.41 0.86 0.49 0.09	0.01 0.10 0.29 0.75 0.55 0.33 0.34 0.35 0.12	0.11 0.40 0.66 1.06 0.38 0.00 0.02 0.00 0.04	0.41 0.71 0.85 0.58 0.15 0.02 0.00	0.65 0.74 0.47 0.25 0.03 0.01	0.75 0.38 0.20 0.08 0.01	0.43 0.13 0.06 0.01	0.16 0.04 0.02	0.05 0.01	0.02		

6.16 Pu 239.

43 		in a state of the
Querschnittstyp	Gruppe	Berechnungsart
σ. in	1 2=11	von ABN-Satz übernommen (2.84)
σ _γ , σ _f , σ _e	1=26	(2.84)
σ_t^{∞}	1-11 12-26	$\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{f}^{\infty} + \sigma_{in}$ $\sigma_{t}^{\infty} = \sigma_{\gamma}^{\infty} + \sigma_{e}^{\infty} + \sigma_{f}^{\infty}$
μ _e	1=26	(1.70)
$\sigma_{e,h \rightarrow h+1}^{\infty} = \sigma_{be,h}^{\infty}$	1=12 13-17 18-25	(3.14),(3.9),(3.27),(3.28) (3.14),(3.9),(3.13) (3.8),(3.9)
f _γ , f _f , f _e	1-8 26 9-16 17-25	$f_{\gamma} = 1, f_{f} = 1, f_{e} = 1$ $(2.28), (2.68), (2.61)$ $(2.9), (2.12), (2.11)$
ft	1-10 26 11-25	} f _t = 1 vom ABN-Satz übernommen
^σ in,h→h+i	1 2 - 11	vom ABN-Satz übernommen (4,1)
ν	1-26	(1.64)

 σ_{2n} ist in Gruppe 1 in σ_{in} enthalten.

Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation [6]

			· ·	· · · · ·			· · ·			
	PU 239									
h	E _h	σ _t	σγ	σ	0 _e	μ,	σ _{be}	V	σ _f	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-05 4.65E-06 2.15E-06 1.00E-06	6.36E 00 7.79E 00 7.94E 00 7.25E 00 7.30E 00 8.42E 00 9.84E 00 1.12E 01 1.25E 01 1.35E 01 1.46E 01 1.59E 01 1.78E 01 1.97E 01 2.61E 01 3.57E 01 4.54E 01 1.23E 02 7.16E 01 1.69E 02 8.08E 01 2.29E 01 3.83E 01 1.32E 02	3.34E-03 6.52E-03 1.15E-02 2.09E-02 4.81E-02 1.08E-01 1.62E-01 2.15E-01 2.33E-01 4.90E-01 7.91E-01 1.20E 00 1.76E 00 2.33E 00 4.70E 00 8.63E 00 1.28E 01 3.44E 01 6.06E 01 3.25E 01 1.36E 00 4.08E 00 3.83E 01	6.40E-01 1.55E 00 1.44E 00 1.08E 00 8.52E-01 7.62E-01 3.74E-01 2.31E-01 1.80E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	3.53E 00 4.38E 00 4.52E 00 4.22E 00 4.67E 00 5.97E 00 7.60E 00 9.10E 00 1.05E 01 1.12E 01 1.12E 01 1.23E 01 1.28E 01 1.34E 01 1.53E 01 1.53E 01 1.54E 01 1.03E 01 1.08E 01 1.17E 01 1.34E 01	8.24E-01 7.73E-01 7.04E-01 5.80E-01 3.60E-01 2.37E-01 1.39E-01 6.36E-02 6.65E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03 2.79E-03	3.90E-02 2.95E-02 4.45E-02 2.77E-02 5.77E-02 6.39E-02 8.56E-02 9.70E-02 1.08E-01 1.00E-01 1.07E-01 1.17E-01 1.17E-01 1.20E-01 1.24E-01 1.17E-01 1.17E-01 1.24E-01 1.17E-02 5.99E-02 5.58E-02 1.10E-01 9.37E-02 9.33E-02 9.65E-02	4.02E 00 3.60E 00 3.32E 00 3.15E 00 3.03E 00 2.97E 00 2.97E 00 2.97E 00 2.90E 00 2.90E 00 2.89E 00	2.19E 00 1.86E 00 1.97E 00 1.94E 00 1.94E 00 1.58E 00 1.55E 00 1.55E 00 1.52E 00 1.52E 00 1.52E 00 1.88E 00 2.45E 00 3.27E 00 3.93E 00 3.93E 01 1.73E 01 5.45E 01 1.79E 01 9.33E 01 3.80E 01 1.08E 01 2.25E 01 8.05E 01	
25 26	4.65E-07 2.15E-07	2.36E 03 9.58E 02	9.12E 02 3.21E 02	0.	1.95E 01 1.06E 01	2.79E-03	0.345-02	2.89E 00	1.43E 03 6.27E 02	
PU 239

f _t

				10	200				' t
h Oo	Т[•К]	0	10 ¹	10 ²	10 ³	104	10 ⁵	10 ⁶	
11	300.0 900.0 2100.0	0.94	0.95	0.99	1.00	1.00		1.00	
12	300.0 900.0 2100.0	0.87	0.90 0.95 0.98	0.97 0.98 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
13	300.0 900.0 2100.0	0.76 0.80 0.85	0.83 0.90 0.95	0.92 0.94 0.97	0.99 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
14	300.0 900.0 2100.0	0.64 0.69 0.75	0.71 0.76 0.82	0.84 0.87 0.91	0.98 0.98 0.99	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
15	300.0 900.0 2100.0	0.51 0.56 0.62	0.58 0.63 0.69	0.74 0.80 0.87	0.96 0.97 0.98	1.00	1.00 1.00 1.00	1.00 1.00 1.00	
16	300.0 900.0 2100.0	0.40 0.44 0.49	0.46 0.52 0.59	0.64 0.70 0.76	0.93 0.95 0.96	0.99 0.99 1.00	1.00 1.00 1.00	1.00 1.00 1.00	
17	300.0 900.0 2100.0	0.31 0.32 0.33	0.35 0.38 0.40	0.52 0.57 0.61	0.88 0.90 0.92	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	
18	300.0 900.0 2100.0	0.16 0.17 0.18	0.20 0.21 0.22	0.30 0.32 0.34	0.69 0.71 0.74	0.95 0.95 0.96	0.99 1.00 1.00	1.00 1.00 1.00	
19	300.0 900.0 2100.0	0.19 0.21 0.23	0.21 0.23 0.25	0.33 0.36 0.39	0.73 0.76 0.79	0.96 0.96 0.97	1.00 1.00 1.00	1.00 1.00 1.00	
20	300.0 900.0 2100.0	0.10 0.11 0.12	0.11 0.13 0.15	0.18 0.23 0.27	0.48 0.58 0.65	0.87 0.91 0.94	0.98 0.99 0.99	1.00 1.00 1.00	
21	300.0 900.0 2100.0	0.17 0.18 0.19	0.18 0.19 0.20	0.20 0.23 0.25	0.53 0.58 0.62	0.89 0.91 0.93	0.99 0.99 0.99	1.00 1.00 1.00	
24	300.0 900.0 2100.0	0.45 0.45 0.45	0.47 0.47 0.47	0.54 0.54 0.54	0.89 0.89 0.89	0.99 0.99 0.99	1.00 1.00 1.00	1.00 1.00 1.00	
25	300.0 900.0 2100.0	0.30 0.30 0.30	0.30 0.30 0.30	0.33 0.33 0.33	0.73 0.73 0.73	0.96 0.96 0.96	1.00 1.00 1.00	1.00 1.00 1.00	

C	١.	6
0-	-4	0

PU 239

1		-	

f_e

Σσ.	- [0]			2					
h 🔍	T [K]	0	10'	10 -	10°	10*	10°	10°	
				T					
	300.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
9	900.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	2100.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.99	1.00	1.00	1.00	1.00	1.00	1.00	
10	900.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	2100.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
11	900-0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	300.0	0.95	0.97	0.99	1.00	1.00	1.00	1.00	
12	900.0	0.96	0.98	0.99	1.00	1.00	1.00	1.00	
	2100.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
	300.0	0.92	0.94	0.98	1.00	1.00	1.00	1.00	
13	900.0	0.93	0.95	0.98	1.00	1.00	1.00	1.00	
	2100.0	0.94	0.96	0.99	1.00	1.00	1.00	1.00	
	300.0	0.87	0.89	0.95	0.99	1.00	1.00	1.00	
14	900-0	0.89	0.91	0.97	0.99	1.00	1.00	1.00	
	2100.0	0.90	0.93	0.98	1.00	1.00	1:00	1.00	
	220000	0070	• • • •	0.70	1.00	1.00	1.000	1.00	
	300.0	0.83	0.85	0.92	0.97	1.00	1.00	1.00	-
15	900.0	0.84	0.87	0.94	0.98	1.00	1.00	1.00	
	2100.0	0.86	0.88	0.95	0.99	1.00	1.00	1.00	
	300.0	0.80	0.81	0.87	0.96	0.99	1.00	1.00	
16	900.0	0.81	0.82	0.90	0.96	1.00	1.00	1.00	
	2100.0	0.82	0.84	0.91	0.98	1.00	1.00	1.00	
	300.0	0.74	0.76	0.82	0.94	0.99	1.00	1.00	
17	900.0	0.76	0.78	0.85	0.96	1.00	1.00	1.00	
	2100.0	0.77	0.79	0.87	0.96	0.99	1.00	1.00	
	300.0	0.61	0.62	0.68	0.83	0.97	1.00	1.00	
18	900.0	0.61	0.63	0.70	0.86	0.98	1.00	1.00	
	2100.0	0.63	0.64	0.72	0.89	0.98	1.00	1.00	-
	300.0	0.53	0.55	0.61	0.80	0.96	0.99	1.00	
19	900.0	0.53	0.55	0.64	0.84	0.98	1.00	1.00	
	2100.0	0.54	0.57	0.67	0.88	0.98	0.99	1.00	
	300.0	0.72	0.73	0.76	0.87	0.97	1.00	1.00	
20	900.0	0.72	0.73	0.77	0.89	0.98	1.00	1.00	
	2100.0	0.73	0.73	0.78	0.91	0.99	1.00	1.00	
	300.0	0.94	0.94	0.95	0.97	0.99	1.00	1.00	
21	900.0	0.94	0.94	0.95	0.97	0.99	1.00	1.00	
	2100.0	0.94	0.94	0.95	0.98	1.00	1.00	1.00	
	300.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
22	900.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	2100-0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
23	900.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	300.0	0.97	0.97	0.98	1.00	1.00	1.00	1.00	·
24	900.0	0.97	0.97	0.98	1.00	1.00	1.00	1.00	
	2100-0	0.97	0.97	0.98	1.00	1.00	1.00	1.00	
	300-0	0.91	0.91	0.92	0-94	0_98	1-00	1,00	······································
25	900-0	0_91	0.92	0-92	0-95	0.98	1.00	1.00	
	2100-0	0.92	0.92	0.92	0.05	0.08	1.00	1.00	
		U • <i>J L</i>	V• /L	V O J L		V • 70	1.00	1.00	

				F	PU 239				fγ
h 0°	т [°к]	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	
	300.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
9	900.0	0.99	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
10	900.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	300.0	0.93	0.96	0.99	1.00	1.00	1.00	1.00	1
11	900.0	0.96	0.97	0.99	1.00	1.00	1.00	1.00	
	2100.0	0.98	0.98	1.00	1.00	1.00	1.00	1.00	
	300.0	0.84	0.90	0.97	1.00	1.00	1.00	1.00	
12	900.0	0.89	0.93	0.98	1.00	1.00	1.00	1.00	
	2100.0	0.93	0.96	0.99	1.00	1.00	1.00	1.00	
• -	300.0	0.71	0.80	0.94	0.99	1.00	1.00	1.00	
13	900.0	0.78	0.85	0.96	0.99	1.00	1.00	1.00	
	2100.0	0.04	0.89	0.97	1.00	1.00	1.00	1.00	
14	500.0	0.51	0.00	0.07	0.90	1 00	1.00	1.00	
14	2100.0	0.71	0.79	0.94	0.99	1.00	1.00	1.00	
	300.0	0.43	0.51	0.76	0.95	0.99	1.00	1.00	
15	900.0	0.51	0.60	0.83	0.97	1.00	1.00	1.00	
	2100.0	0.57	0.66	0.88	0.98	1.00	1.00	1.00	
	300.0	0.32	0.38	0.62	0.91	0.99	1.00	1.00	1
16	900.0	0.39	0.47	0.72	0.93	0.99	1.00	1.00	
16	2100.0	0.45	0.53	0.78	0.96	1.00	1.00	1.00	
	300.0	0.21	0.27	0.51	0.85	0.98	1.00	1.00	
17	900.0	0.27	0.34	0.60	0.90	0.99	1.00	1.00	
	2100.0	0.33	0.42	0.68	0.92	0.98	0.99	0.99	
10	300.0	0.12	0.10	0.31	0.67	0.94		1.00	
10	900.0	0.14	0.21	0.30	0.70	0.95	0.99 A CC	1.00	
	300.0	0.09	0.12	0.76	0.63	0.93	0.99	1.00	
19	900.0	0.10	0.14	0.31	0.71	0.96	1.00	1.00	
• •	2100.0	0.12	0.17	0.37	0.78	0.97	1.00	1.00	
	300.0	0.11	0.14	0.28	0.64	0.93	0.99	1.00	
20	900.0	0.12	0.15	0.31	0.69	0.95	0.99	1.00	
	2100.0	0.13	0.17	0.35	0.75	0.96	1.00	1.00	
	300.0	0.11	0.14	0.25	0.59	0.92	0.99	1.00	
21	900.0	0.12	0.14	0.27	0.64	0.93	0.99	1.00	
	2100.0	0.12	0.15	0.29	0.69	0.95	0.99	0.99	[
~~	300.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
22	900.0	0.97	0.90	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.97	0.90	1.00	1.00	1.00	1.00	1.00	
23	900.0	0.89	0.92	0.97	1.00	1.00	1.00	1.00	
23	2100.0	0.89	0.92	0.97	1.00	1.00	1.00	1.00	
1	300-0	0.65	0.68	0.79	0.95	1.00	1.00	1.00	
24	900.0	0.66	0.68	0.79	0.95	1.00	1.00	1.00	
	2100.0	0.66	0.68	0.79	0.96	1.00	1.00	1.00	
	300.0	0.49	0.50	0.52	0.67	0.91	0.99	1.00	
25	900.0	0.50	0.50	0.53	0.68	0.91	0.99	1.00	
	2100 n	0.51	0.52	0.54	0.601	0.91	0.98	0.99	

6-	48
0-	40

PU 239

f_f

									-
$h \sigma_0$	т [° к]	0	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶	
	300.0	0.98	0.00	1.00	1.00	1.00	1.00	1.00	
0	900.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	2100.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	300.0	0.96	0.98	0.99	1.00	1.00	1.00	1.00	
10	900.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.99	0.99	1.00	1.00	1.00	1.00	1.00	
	300.0	0.94	0.96	0.99	1.00	1.00	1.00	1.00	
11	900.0	0.96	0.97	0.99	1.00	1.00	1.00	1.00	
	2100.0	0.97	0.97	0.99	1.00	1.00	1.00	1.00	
	300.0	0.87	0.92	0.96	1.00	1.00	1.00	1.00	ł
12	900.0	0.91	0.94	0.98	1.00	1.00	1.00	1.00	
	2100.0	0.93	0.96	0.99	1.00	1.00	1.00	1.00	
	300.0	0.79	0.85	0.95	0.99	1.00	1.00	1.00	
13	900.0	0.83	0.89	0.95	0.99	1.00	1.00	1.00	
	2100.0	0.87	0.91	0.96	1.00	1.00	1.00	1.00	
	300.0	0.70	0.76	0.91	0.97	1.00	1.00	1.00	
14	900.0	0.74	0.80	0.94	0.98	1.00	1.00	1.00	
	2100.0	0.78	0.84	0.95	0.99	1.00	1.00	1.00	
	300.0	0.61	0.67	0.85	0.95	0.99	1.00	1.00	
15	900.0	0.66	0.72	0.89	0.96	1.00	1.00	1.00	
ļ	2100.0	0.69	0.76	0.91	0.98	1.00	1.00	1.00	
	300.0	0.54	0.59	0.76	0.95	0.98	1.00	1.00	
16	900.0	0.58	0.63	0.81	0.93	0.99	1.00	1.00	
	2100.0	0.62	0.67	0.85	0.95	0.99	1.00	1.00	
	300.0	0.33	0.40	0.63	0.90	0.99	1.00	1.00	
17	900.0	0.38	0.45	0.70	0.93	0.99	1.00	1.00	
	2100.0	0.43	0.52	0.75	0.95	0.99	0.99	1.00	
10	300.0	0.21	0.26	0.40	0.78	0.96	1.00	1.00	
18	900.0	0.22	0.28	0.48	0.81	0.97	1.00	1.00	
	2100.0	0.24	0.30	0.22	0.84	0.97	0.00	0.99	
10	500.0	0.14	0.10	0.33	0.70	0.94	1 00	1.00	
17	900.0	0.15	0.21	0.62	0.01	0.97	1.00	1.00	
	2100.0	0.10	0.20	0.45	0.60	0.91	0.00	1.00	
20	900.0	0.17	0.20	0.30	0.72	0 05	0.00	1 00	
20	2100.0	0.17	0.22	0.41	0.77	0.97	1.00	1.00	
	300-0	0.17	0.20	0.31	0.62	0.92	0.99	1.00	
21	900-0	0.17	0.20	0.32	0.66	0.94	0.99	1.00	
	2100-0	0.18	0.21	0.34	0.71	0.95	0.99	1.00	
	300.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
22	900.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
	2100.0	0.97	0.98	1.00	1.00	1.00	1.00	1.00	
	300.0	0.90	0.93	0.98	1.00	1.00	1.00	1.00	
23	900.0	0.90	0.93	0.98	1.00	1.00	1.00	1.00	
	2100.0	0.91	0.93	0.98	1.00	1.00	1.00	1.00	
	300.0	0.72	0.74	0.83	0.96	1.00	1.00	1.00	
24	900.0	0.72	0.74	0.83	0.96	1.00	1.00	1.00	
	2100.0	0.72	0.74	0.83	0.97	1.00	1.00	1.00	
	300.0	0.50	0.51	0.53	0.68	0.91	C.99	1.00	
25	900.0	0.51	0.51	0.54	0.68	0.91	0.99	1.00	
	2100.0	0.53	0.53	0.55	0.70	0.91	0.98	0.99	
		· · · ·		L	·			ŀ	I

	$\sigma_{in, h \rightarrow h+i} [barn]$ PU 239												
h	0	1	2	3	4	5	6	7	8	9			
1 2 3 4 5 6 7 8 9 10 11	0.00 0.01 0.05 0.09 0.22 0.39 0.42 0.30 0.21 0.10 0.18	0.00 0.06 0.17 0.19 0.32 0.29 0.09 0.07 0.06 0.13	0.04 0.24 0.36 0.39 0.17 0.06 0.01 0.00	0.15 0.44 0.46 0.25 0.10 0.02 0.01	0.26 0.44 0.25 0.11 0.03 0.01	0.32 0.22 0.10 0.04 0.01	0.18 0.10 0.03 0.01	0.07 0.04 0.01	0.03 0.01	0.01			

6.17 Neuere Spalt- und Absorptionsquerschnitte von U 235 und Absorptionsquerschnitte von U 238.

		U 238	U 235	
Gruppe	obere Gruppen grenze [eV]	σ_{γ}^{∞} [barn]	σ_{γ}^{∞} [barn]	$\sigma_{\mathbf{f}}^{\infty}$ [barn]
6	8,0.10 ⁵	0,121	-	1812
7	4,0.105	0,127	0,199	1,154
8	2,0.105	0,164	0,322	1,337
9	1,0.105	0,282	0,531	1,667
10	4,65.104	0,457	0,772	2 , 150
11	2,15.104	0,630	ude	

Berechnung nach (2.84)

Die Kerndaten sind den Arbeiten [11] und [12] entnommen. Wichtungsspektrum Abb. I

6.18 Bremselastische Querschnitte für Core und Blanket eines. Na-gekühlten Reaktors.

Die bremselastischen Querschnitte wurden für die Isotope C, O, Na, Al, Cr, Fe, Ni, U235, U238, Pu239 mit den Spektren aus Abb. II und Abb. III berechnet. Die Formeln entsprechen denen in den Kapiteln 6.7 bis 6.16 angegebenen Formeln. Die Kerndaten sind dem Karlsruher Kerndatenband entnommen. Dokumentation [6], [7].

-		CORE								
h	AL	С	CR	FE	NA	NI	0	PU 239	U 235	U 238
1	1.36E-01	4.16E-01	6.68E-02	6.31E-02	9.60E-02	6.03E-02	4.16E-01	2.71E-02	2.50E-02	2.74E-02
2	2.14E-01	6.71E-01	9.36E-02	1.05E-01	2.12E-01	8.99E-02	4.97E-01	3.31E-02	3.35E-02	3.63E-02
3	3.45E-01	9.50E-01	1.65E-01	1.42E-01	2.30E-01	1.07E-01	3.49E-01	4.20E-02	4.18E-02	4.35E-02
.4	3.12E-01	6.85E-01	1.63E-01	1.53E-01	3.99E-01	1.95E-01	6.06E-01	3.25E-02	3.84E-02	2.81E-02
5	4.53E-01	9.08E-01	2.32E-01	1.57E-01	5.45E-01	1.88E-01	1.23E 00	5.27E-02	4.64E-02	5.09E-02
6	5.27E-01	9.52E-01	2.32E-01	2.66E-01	5-36E-01	1.78E-01	1.64E 00	6.95E-02	6.14E-02	7.34E-02
7	6.24E-01	1.05E 00	1.705-01	1.78E-01	6.79E-01	4.11E-01	8.47E-01	9.27E-02	8.90E-02	1.04E-01
8	3.48E-01	1.01E 00	5.10E-01	1.85E-01	3.88E-01	2.14E-01	6.55E-01	1.04E-01	1.02E-01	1.22E-01
9	2.74E-01	8.83E-01	4.60E-01	1.79E-01	6.61E-01	1.90E-01	5.72E-01	1.10E-01	1.08E-01	1.28E-01
10	5.11E-02	8.34E-01	1.10E-01	5.17E-02	3.91E-01	5.98E-01	5.06E-01	1.01E-01	1.04E-01	1.20E-01
11	1.04E-01	8.91E-01	4-31E-01	2.88E-01	5.47E-01	4.65E-01	5.46E-01	1.14E-01	1.16E-01	1.35E-01
12	8.70E-02	6.82E-01	5.64E-01	1.52E-01	7.93E-01	7.87E-01	3.68E-01	8.22E-02	7.96E-02	8.81E-02
13	9-68E-02	7.39E-01	1.76E-01	2.12E-01	5.59E 00	4.96E-01	4.40E-01	1.03E-01	9.59E-02	3.83E-02
14	1.01E-01	7.92E-01	1.59E-01	3.04E-01	3.50E-01	4.86E-01	4.50E-01	1.10E-01	1.11E-01	1.55E-01
15	7.64E-02	6.26E-01	1.17E-01	2.69E-01	2.07E-01	3.98E-01	3.31E-01	8.47E-02	7.88E-02	6.30E-02
16	6.85E-02	5.67E-01	1.04E-01	2.55E-01	1.82E-01	3.66E-01	2.95E-01	7.89E-02	7.08E-02	8.51E-02
17	5.12E-02	4.52E-01	7.39E-02	1.83E-01	1.37E-01	2.61E-01	2.09E-01	5.81E-02	5.04E-02	5.80E-02
18	4.61E-02	4.06E-01	6.68E-02	1.66E-01	1.23E-01	2.37E-01	1.89E-01	3.41E-02	4.26E-02	4.15E-02
19	3.76E-02	3.50E-01	5.17E-02	1.28E-01	1.02E-01	1.84E-01	1.46E-01	2.24E-02	3.18E-02	8.03E-02
20	2.67E-02	2.63E-01	3.48E-02	8.61E-02	7.33E-02	1.24E-01	9.82E-02	1.39E-02	2.14E-02	1.67E-02
21	5.77E-02	4.57E-01	8.73E-02	2.16E-01	1.52E-01	3.11E-01	2.47E-01	4.52E-02	5.25E-02	2.76E-02
22	3.67E-02	3.40E-01	4.74E-02	1.176-01	9.83E-02	1.69E-01	1.34E-01	2.75E-02	3.24E-02	1.75E-02
23	5.12E-02	4.15E-01	7.37E-02	1.83E-01	1.35E-01	2.62E-01	2.09E-01	4.63E-02	5.33E-02	2.75E-02
24	2.87E-02	2.81E-01	3.52E-02	8.74E-02	7.84E-02	1.25E-01	1.46E-01	2.90E-02	2.79E-02	1.35E-02
25	3-22E-02	2.61E-01	4.63E-02	1.15E-01	8.61E-02	1.64E-01	1.49E-01	2.52E-02	3.73E-02	1.75E-02
26	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.

					Ο _{be}			BLANKET			
h	AL	С	CR	FE	NA	NI	0	PU 239	U 235	U 238	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1.49E-01 1.91E-01 3.45E-01 3.28E-01 4.73E-01 5.59E-01 6.42E-01 3.59E-01 2.84E-01 5.10E-02 1.07E-01 8.42E-02 1.06E-01 1.07E-01 8.95E-02 8.31E-02 7.03E-02 6.34E-02 2.81E-02 1.10E-01 4.82E-02 4.06E-02	4.56E-01 5.99E-01 9.51E-01 7.22E-01 9.48E-01 1.01E 00 1.09E 00 1.04E 00 9.13E-01 8.35E-01 9.12E-01 6.67E-01 8.05E-01 8.14E-01 7.12E-01 6.65E-01 5.21E-01 4.06E-01 2.99E-01 5.00E-01 2.80E-01 7.58E-01 4.38E-01 3.30E-01	7.31E-02 8.35E-02 1.65E-01 1.72E-01 2.42E-01 2.47E-01 1.75E-01 5.27E-01 4.76E-01 1.10E-01 4.49E-01 1.94E-01 1.94E-01 1.94E-01 1.30E-01 1.97E-01 9.24E-02 6.41E-02 9.64E-02 3.37E-02 1.78E-01 6.32E-02 5.85E-02	6.90E-02 9.34E-02 1.42E-01 1.61E-01 1.64E-01 2.83E-01 1.83E-01 1.85E-01 1.85E-01 1.46E-01 2.33E-01 3.26E-01 3.22E-01 3.17E-01 2.65E-01 2.29E-01 1.59E-01 1.02E-01 2.39E-01 8.36E-02 4.41E-01 1.57E-01 1.45E-01	1.05E-01 1.89E-01 2.30E-01 4.20E-01 5.69E-01 5.69E-01 3.99E-01 3.99E-01 5.66E-01 7.68E-01 6.14E 00 3.69E-01 2.42E-01 1.87E-01 1.64E-01 1.22E-01 8.46E-02 1.67E-01 7.62E-02 2.84E-01 1.30E-01 1.09E-01	6.61E-02 8.02E-02 1.07E-01 2.05E-01 1.96E-01 1.89E-01 4.23E-01 2.21E-01 1.97E-01 5.95E-01 4.85E-01 5.46E-01 5.46E-01 3.78E-01 3.78E-01 3.78E-01 3.28E-01 1.46E-01 3.43E-01 1.20E-01 6.31E-01 2.24E-01 2.07E-01	4.55E-01 4.43E-01 3.49E-01 6.38E-01 1.28E 00 1.74E 00 8.72E-01 6.77E-01 5.91E-01 5.03E-01 5.71E-01 3.52E-01 4.86E-01 3.97E-01 3.67E-01 3.67E-01 1.81E-01 1.16E-01 2.72E-01 9.53E-02 5.03E-01 2.35E-01 1.88E-01	2.97E-02 2.96E-02 4.20E-02 3.42E-02 5.51E-02 7.38E-02 9.55E-02 1.08E-01 1.14E-01 1.00E-01 1.20E-01 1.20E-01 1.02E-01 1.02E-01 9.81E-02 8.41E-02 4.70E-02 2.77E-02 1.64E-02 4.98E-02 1.98E-02 1.10E-01 5.16E-02 3.18E-02	2.74E-02 2.99E-02 4.18E-02 4.05E-02 4.85E-02 6.51E-02 9.17E-02 1.05E-01 1.11E-01 1.04E-01 1.22E-01 7.63E-02 1.06E-01 1.20E-01 9.45E-02 8.80E-02 7.29E-02 5.87E-02 3.93E-02 2.52E-02 5.79E-02 2.33E-02 1.27E-01 4.97E-02 4.72E-02	3.00E-02 3.24E-02 4.36E-02 2.95E-02 5.31E-02 7.79E-02 1.07E-01 1.26E-01 1.20E-01 1.42E-01 8.44E-02 4.24E-02 1.68E-01 7.53E-02 1.06E-01 8.33E-02 5.72E-02 9.91E-02 1.97E-02 3.05E-02 1.25E-02 6.54E-02 2.40E-02 2.21E-02	
26	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	

7. Literaturverzeichnis.

- L.P. Abagjan, N.O. Bazazjanc, I.I. Bondarenko, M.N. Nikolaev,
 Gruppenkonstanten schneller und intermediärer Neutronen für die Berechnung von Kernreaktoren, KFK-tr-144.
- [2] R. Froelich,
 Theorie der Dopplerkoeffizienten schneller Reaktoren unter Berücksichtigung der gegenseitigen Abschirmung der Resonanzen,
 KFK 367.
- [3] A.M. Weinberg, E.P. Wigner, The Physical Theory of Neutron Chain Reactors.
- H. Küsters, M. Metzenroth,
 The Influence of Some Important Group Constants on Integral Fast Reactor Quantities.
 ANL 7120 (1965) 432.
- [5] J.J. Schmidt,
 Neutron Cross Sections for Fast Reactor Materials. Part I:
 Evaluation, KFK 120 (EANDC-E-35U).
- [6] I. Langner, J.J. Schmidt, D. Woll,
 Tables of Evaluated Neutron Cross Sections for Fast Reactor Materials.
 KFK 750, EUR 3715 e, EANDC(E)-88"L".
- [7] D.C. King,
 Neutron Reaction Data on Aluminium and Oxygen for the U.K.A.E.A.
 Nuclear Data Library, February 1964.
 AEEW-M445
- [8] I. Langner, J.J. Schmidt, D. Woll, KEDAK-Notiz Nr. 4; interne Notiz
- [9] E. Kiefhaber, H. Küsters, GROUCO-Notiz Nr. 47, interne Notiz.

- [10] E. Kiefhaber, Berechnung der Winkelverteilung bei Streuung langsamer Neutronen in Wasser. KFK 103 (1962) Nukleonik 4, 82 (1962).
 [11] W.P. Pönitz, D. Kompe, H.O. Menlove, K.H. Beckurts,
 - 11] W.P. Pönitz, D. Kömpe, H.O. Menlove, K.H. Beckurts, Some New Measurements and Renormalizations of Neutron Capture Cross Section Data in the keV Energy Range. KFK 635, SM 101/9, EUR 3679e.
- [12] K.H. Beckurts, persönliche Mitteilung (1967).
- [13] KFK-Bericht in Vorbereitung.
- [14] J.J. Schmidt, W. Dittrich, KFK 353; 26-Gruppen Abschirmfaktoren für Eu, Sm, Gd, Hf.

[15] J.J. Schmidt, I. Siep, KFK 352; 26-Gruppenwirkungsquerschnitte für Eu, Sm, Gd, Hf.

8. Anhang I. Verzeichnis der verwendeten Symbole.

F	Stoßdichte
f	energetischer Selbstabschirmfaktor
j	Neutronenstrom
N	Teilchenzahl
ф	Neutronenfluß
х	Spaltspektrum
ν	Anzahl Neutronen pro Spaltung
σ	mikroskopischer Wirkungsquerschnitt
Σ	makroskopischer Wirkungsquerschnitt
a	Atomgevicht
$\alpha \equiv \frac{(A)}{(A)}$	$\frac{-1}{(+1)^2}$
S K	Summe über alle K
S K '≠ K	Summe über alle K'≠K
V and a	Neutronengeschwindigkeit

Die Indizes haben folgende Bedeutung:

121	
K,K*	kennzeichnet Isotope
g, h, h'	kennzeichnet Energiegruppen
x	Index für die Neutronenreaktion (n,x)
	Dabei kann x bedeuten:
	x=f Spaltung
	x=y Absorption
	x=e elastische Streuung
	x=in inelastische Streuung
	x=2n (n,2n)-Prozesse
	x=t total
8	bezeichnet einen Gruppenwirkungsquerschnitt bei unendlicher Verdünnung
r, r'	Resonanzennummerierungen
1	bezieht sich auf das erste Moment des Streukerns
ν	Wichtung mit div j
s, s†	Serienindex

9. Anhang II. Hinweise auf die Berechnung von makroskopischen Gruppenkonstanten in der Querschnittsphase von MUSYS.

Die mikroskopischen Gruppenkonstanten wurden durch das Programmsystem MIGROS berechnet und auf dem Gruppenkonstantenband GROUCO gespeichert. GROUCO bildet die Grundlage für die Berechnung von makroskopischen Gruppenquerschnitten, die in der Querschnittsphase des Programmsystems NUSYS erfolgt. Dazu noch zwei Bemerkungen:

1) Die Bestimmung des mittleren Resonanzuntergrundes σ_{\bullet} .

Die normalerweise verwendete Formel ist durch (2.3) gegeben. In einem Reaktor, der U238 zusammen mit Pu239 enthält, wird der Anteil des Resonanzuntergrundes von U238 in bezug auf die energetische Selbstabschirmung von Pu239 durch Formel (2.3) überschätzt, da die Resonanzen von U238 wesentlich weiter auseinanderliegen als diejenigen von Pu239. Das bedeutet aber, daß für die meisten Resonanzen von Pu239 der Anteil des Resonanzuntergrundes von U238 durch den Potentialquerschnitt und nicht durch den mittleren totalen Querschnitt von U238, wie in (2.3) angenommen ist, bestimmt wird. (2.3) wird deshalb wie folgt abgeändert:

$$\sigma_{o}[Pu239] = \frac{N^{U238}}{N^{Pu239}} \sigma_{p}^{U238} + S_{K'} \frac{N^{K'}}{N^{Pu239} \cdot (E_{g} - E_{g+1})} \cdot \int_{(g)}^{K'} \sigma_{t}^{K'}(E) dE$$

2) Wie schon in früheren Kapiteln erwähnt wurde, bestehen zwei Möglichkeiten zur Berechnung von bremselastischen Querschnitten. Die erste Möglichkeit ist die Berechnung der makroskopischen bremselastischen Querschnitte aus mikroskopischen bremselastischen Querschnitten, wie sie in den Tabellen angegeben und auch auf GROUCO tabelliert sind. (Kapitel 3.1 bis 3.4 sowie 3.6)

Die zweite Möglichkeit ist die in Kapitel 3.5 beschriebene. Die dazu nötigen Ausgangsdaten sind nicht auf GROUCO, sondern auf dem ERDAK-Band gespeichert. Die Berechnung des bremselastischen Querschnittsvon ERDAK ist in der Querschnittsphase von NUSYS möglich.

Anhang III: Bemerkungen zur numerischen Genauigkeit der energetischen Selbstabschirmfaktoren.

Im Bereich der statistischen Resonanzen ist die numerische Genauigkeit $\leq 1\%$. Für f-Faktoren nahe eins wird für die statistischen Mittelwerte $\overline{\mathrm{FJ}}$ die in (2.81) gegebene Näherung verwendet. Beim Übergang von der totalnumerischen Berechnung zur näherungsweisen Berechnung treten Sprünge von ungefähr 1% auf. Da sich aber für große σ_{O} -Werte die f-Faktoren zu verschledenen Temperaturen oder benachbarten σ_{O} -Werten meist um weniger als 1% unterscheiden, kann es vorkommen, daß die theoretisch erwartete Tendenz der f-Faktoren in der Temperatur bzw. in σ_{O} verletzt ist. Diese Verletzung ist nur durch numerische Ungenauigkeit bedingt.

Bei der Berechnung von f-Faktoren aus Resonanzparametern im Bereich gemessener Resonanzen ist der Fehler, herrührend von der numerischen Integration, ungefähr 1%. Falls die f-Faktoren temperaturabhängig sind, werden diese für $\sigma \rightarrow \infty$ nicht für alle Temperaturen gleich eins. Dies folgt aus der verwendeten Definition (2.8). Der Gruppenquerschnitt bei unendlicher Verdünnung ist nicht exakt temperaturunabhängig.

Das Integral über die Resonanzen, die auch bei starker Verbreiterung noch innerhalb der Gruppengrenzen liegen, ist zwar temperaturunabhängig, nicht aber das Integral über die Resonanzen, die an den Gruppengrenzen liegen. Diese "Randresonanzen" geben einen temperaturabhängigen Beitrag. Falls genügend Resonanzen in einer Energiegruppe liegen, ist dieser Effekt sehr klein.

Anhang IV: Bemerkungen zum 26 GR.-ABN-Satz. (GROUCO 7)

Wie schon in der Einleitung erwähnt, wurden folgende Elemente unverändert vom 26 GR.-ABN-Satz (GROUCO 7) übernommen: D, He, Li, Be, B10, B11, N, Mg, Si, Cl, K, Ca, Ti, V, Zr, Nb, Mo, Eu, Gd, Hf, Ta, Pb, Bi, Th 232, U 233, Pu 240, Pu 241, Pu 242, sowie Spaltprodukte von Pu 239.

11-1

Davon stimmt für folgende Elemente der 26 GR.-ABN-Satz (GROUCO 7) mit dem Gruppensatz von Bondarenko et al. [1] überein: Li, B10, B11, Mg, Si, K, Ca, Ti, V, Zr, Nb, Mo, Ta, Bi, Th 232, U 233, Pu 240, Pu 241, Pu 242 und Spaltprodukte von Pu 239.

Die Elemente D, Be, N wurden mit den anschließend aufgeführten Änderungen von Bondarenko et al. [1] übernommen. Ferner enthält der 26 GR.-ABN-Satz (GROUCO 7) Gruppenkonstanten für He, CL, Eu, Gd, Hf. Für He und Cl sind die Gruppenkonstanten im folgenden tabelliert; die Resonanzselbstabschirmung wird vernachlässigt. Die Gruppenkonstanten für Eu, Gd und Hf sind in den Arbeiten [14] und [15] dokumentiert.

Die aufgeführten Gruppenquerschnitte für die thermische Gruppe sind wie in der Arbeit von Bondarenko et al. ungewichtet und entsprechen den Querschnitten bei 0,0252 eV. Quellenangaben zu den hier aufgeführten Abweichungen von Bondarenko et al. sind in den internen GROUCO-Notizen zu finden.

	Deuterium D											
GRUPPEN INDEX	σ _t	σ _γ	σ _e	μ _e	σ _{be}	^σ e,h → h						
7					2.36							
10-23					2.24							
24	3.42	0.0002	3.42	0.23	2.2434	1.1766						
25	3.62	0.0004	3.62	0.21	2.3850	1.235						
26	5.06	0.00115	5.06	0.12								
					·							

GRUPPEN INDEX	στ	σ _Υ	σ _e	μ _e	^o e _s h → h	
24	6.00	0.002	6.00	0.07	4.37	
25	6.00	0.003	6.00	0.07	4.37	
26	6.01	0.0093	6.00	0.10		

			2	

			Chlor Cl $\sigma_{in,h} \rightarrow h+i$					
i	0	1	2	3	4	5	6	7
1	0.0	0.08	0.21	0.34	0.26	0.14	0.06	0 . 01
2	0.0	80.0	0.34	0.32	0.21	0.08	0.02	
3	0.0	0.0	0.40	0.30	0.10		-	
4	0.0	0.22						
5	0.0	0.002				Real of the second se		

				Hafnium Hf ^σ in,h → h+i							
h	o	1	2	3	4	5	6	7	8		
1	0	0.060	0.294	0.757	0.761	0.556	0.213	0.065	0.019		
2	0.017	0.145	0,591	0.799	0.916	0.302	0.096	0.032	0.006		
3	0.058	0.433	0.822	0.911	0.456	0.160	0.049	0.015			
4	0.210	0.643	0.972	0.594	0.229	0,083	0.019				
5	0.321	0.780	0.618	0.281	0.098	0.026	0.006				
6	0.461	0.531	0.294	0.122	0.025	0.007					
7	0.373	0.286	0.132	0.040	0.009						
8	0	0.190	0.063	0.017							

			E	urcpium	Eu	^σ in,h	-→ h+i			-
h	0		2	3	<u>)</u>	5	6	7	8	
1	0	0.053	0.256	0.671	0.685	0.520	0.219	0.078	0.030	
2	0.028	0.178	0.628	0.752	0.625	0.261	0.083	0.023	0+005	
3	0.081	0.483	0.814	0.830	0.394	0.141	0.043	800.0		
4	0.275	0.729	0,994	0.560	0.212	0.069	0.015	0.006		
5	0.483	1.002	0.727	0.315	0,109	0.029	0.005			
6	0.635	0.657	0,344	0,132	0.036	0,005				
7	0.537	0.376	0.168	0.048	0.011					
8	0.365	0.203	0.065	0.017				- Transfer		
9	0.236	0.090	0.025	0						
10	0.017	0.053	0.015	0,005				an - Frank - State		

	Gadolinium Gd ^σ in,h → h+i											
i h	0	1	2	3	4	5	6	7	8			
1	0	0.054	0.265	0.694	0.709	0.537	0.226	0.080	0.031			
2	0.028	0.176	0.619	0.741	0.617	0.258	0.082	0.023	0.005			
3	0.076	0.457	0.768	0.784	0.372	0.132	0.040	0.008				
4	0.264	0.701	0.956	0.539	0.204	0.066	0.014	0.006				
5	0.514	1.065	0.773	0,335	0.116	0.031	0.006					
6	0.748	0.773	0.405	0.155	0.043	0.006						
7	0.556	0,389	0.173	0.050	0,012							
8	0.291	0.163	0.052	0,014								
9	0.061	0,023	0,006									

				<u>CI</u>			
				<u> </u>			•
h	E _h	σ	σγ	$\sigma_{\sf in}$	σ _e	μe	0 _{be}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06	2.23E 00 2.70E 00 3.04E 00 2.86E 00 2.30E 00 2.10E 00 2.00E 00 1.91E 00 2.31E 00 2.31E 00 2.34E 00 1.76E 00 1.39E 00 1.78E 00 2.39E 00 5.27E 00 5.60E 00 8.49E 00 1.14E 01 1.43E 01 1.66E 01 1.78E 01 1.90E 01 2.13E 01	1.54E-01 1.00E-01 3.70E-02 9.00E-03 3.00E-03 3.00E-03 4.00E-03 7.00E-03 1.20E-02 2.20E-02 3.70E-02 3.70E-02 9.00E-02 1.34E-01 1.86E-01 2.72E-01 4.00E-01 5.94E-01 1.25E 00 1.81E 00 2.62E 00 3.82E 00 5.74E 00	1.10E 00 1.05E 00 8.00E-01 2.20E-01 2.00E-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9.80E-01 1.55E 00 2.20E 00 2.63E 00 2.30E 00 2.10E 00 2.00E 00 1.90E 00 2.30E 00 1.90E 00 2.30E 00 1.70E 00 1.30E 00 1.65E 00 2.20E 00 5.00E 00 5.20E 00 7.90E 00 1.65E 01 1.52E 01 1.52E 01 1.56E 01	6.94E-01 5.84E-01 4.40E-01 3.30E-01 3.08E-01 2.88E-01 1.54E-01 1.10E-01 6.60E-02 4.40E-02 3.30E-02 1.90E-02	8.20E-02 1.21E-01 1.72E-01 1.74E-01 1.57E-01 1.38E-01 1.38E-01 1.38E-01 1.57E-01 2.10E-01 1.63E-01 1.24E-01 9.30E-02 1.18E-01 1.58E-01 3.58E-01 3.58E-01 3.58E-01 3.73E-01 5.66E-01 7.61E-01 9.32E-01 1.06E 00 1.09E 00 1.09E 00 1.12E 00
26	2.15E-07	4.12E 01	2.67E 01	0.	1.60E 01 1.45E 01	1.90E-02 1.90E-02	1.15E 00 0.

11-1-

			:		HE				
h	E _h	σ _t	σ _γ	Øin	σ _e	μ _e	Ø _{be}	σ _{h→h+1}	Ø _{h→h+2}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04 4.65E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06 4.65E-07	1.70E 00 2.20E 00 2.80E 00 4.50E 00 1.80E 00 8.60E-01 7.70E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		1.70E 00 2.20E 00 2.80E 00 4.50E 00 7.60E 00 1.80E 00 8.60E-01 7.70E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01 7.20E-01	5.60E-01 4.40E-01 3.10E-01 2.30E-01 3.10E-01 6.20E-01 5.60E-01 4.30E-01 2.70E-01 1.80E-01 1.80E-01 1.80E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01 1.70E-01	6.30E-01 1.02E 00 1.70E 00 2.76E 00 3.66E 00 4.30E-01 2.50E-01 1.64E-01 2.52E-01 2.73E-01 2.83E-01 2.83E-01 2.83E-01 2.83E-01 2.87E-	4.35E-01 6.95E-01 1.32E 00 2.20E 00 3.62E 00 4.30E-01 2.50E-01 1.64E-01 2.52E-01 2.73E-01 2.83E-01 2.83E-01 2.83E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01 2.87E-01	1.95E-01 3.25E-01 3.80E-01 5.60E-01 4.00E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
26	2.15E-07	7.20E-01	0.	0.	7.202-01	1.70E-01	0.	0.	0.

٤

				Eu			
h	Е _р	Q+	σ.,	Øin	σ.	11	σ.
			Ŷ	- 111	- e	r= e	~ be
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-04	4.65E 00 5.33E 00 6.62E 00 7.35E 00 7.51E 00 7.92E 00 8.61E 00 9.67E 00 1.11E 01 1.32E 01 1.63E 01 2.71E 01 3.65E 01 5.04E 01 7.14E 01 1.01E 02 1.45E 02	8.00E-03 1.70E-02 3.60E-02 8.20E-02 1.50E-01 2.20E-01 4.60E-01 7.60E-01 1.52E 00 2.56E 00 4.09E 00 6.82E 00 1.15E 01 1.92E 01 3.13E 01 5.02E 01 7.86E 01 1.22E 02 1.725 02	2.51E 00 2.58E 00 2.79E 00 2.86E 00 2.67E 00 1.81E 00 1.14E 00 6.50E-01 3.50E-01 9.00E-02 0. 0. 0. 0. 0. 0. 0.	2.13E 00 2.73E 00 3.79E 00 4.41E 00 4.69E 00 5.89E 00 7.01E 00 8.26E 00 9.18E 00 1.06E 01 1.22E 01 1.37E 01 1.56E 01 1.56E 01 1.91E 01 2.12E 01 2.25E 01 2.32E 01	7.30E-01 7.60E-01 7.80E-01 7.10E-01 5.00E-01 3.70E-01 2.30E-01 1.30E-01 6.80E-02 3.10E-02 1.50E-02 7.00E-03 4.00E-03 4.00E-03 4.00E-03 4.00E-03	3.90E-02 2.90E-02 2.70E-02 2.70E-02 5.40E-02 7.10E-02 1.04E-01 1.37E-01 1.46E-01 1.76E-01 2.06E-01 2.34E-01 2.67E-01 2.97E-01 3.27E-01 3.63E-01 3.98E-01
20	2.15E-05	2.38E 02	2.22E 02	0.	1.60E 01	4.00E-03	2.745-01
21	1.00E-05	2.51E 02	2.40E 02	0.	1.17E 01	4.00E-03	2.01E-01
22	4.65E-06	8.50E 02	8.32E 02	0.	1.78E 01	4.00E-03	3.05E-01
23	2.15E-06	2.60E 02	2.53E 02	0.	7.10E 00	4.00E-03	1-22E-01
24	1.00E-00	2.34E U3	2.29E 03	0.	5.80E 01	4.00E-03	9.94E-01
26	2.15E-07	3.82E C3	3.81E 03	0.	9.00E 00	4.00E-03 4.00E-03	1.06E CO 0.
	••••••••••••••••••••••••••••••••••••••			•			

				Gđ	a transformation 19 to a second		
h	E _h	σ,	σγ	σ _{in}	0 _e	μ _e	σ _{be}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 1.00E-01 4.65E-02 2.15E-02 1.00E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 1.00E-05 2.15E-05 1.00E-05 4.65E-06 2.15E-06 1.00E-06	5.08E 00 5.56E 00 6.27E 00 6.90E 00 7.25E 00 7.34E 00 7.63E 00 8.25E 00 9.12E 00 1.04E 01 1.35E 01 1.35E 01 1.91E 01 2.95E 01 3.20E 01 4.42E 01 3.87E 01 3.93E 01 6.62E 01 4.58E 01 1.66E 02 7.20E 01 1.36E 02	4.00E-03 1.10E-02 3.30E-02 8.50E-02 1.10E-01 1.0E-01 1.60E-01 1.60E-01 1.5E 00 1.78E 00 2.56E 00 4.46E 00 7.90E 00 1.22E 01 1.88E 01 3.16E 01 2.83E 01 2.98E 01 4.98E 01 3.83E 01 1.56E 02 6.54E 01 1.27E 02	2.60E 00 2.55E 00 2.64E 00 2.75E 00 2.84E 00 2.13E 00 1.18E 00 5.20E-01 9.00E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.48E 00 3.00E 00 3.60E 00 4.07E 00 4.30E 00 5.10E 00 6.29E 00 7.35E 00 9.25E 00 9.72E 00 1.09E 01 1.25E 01 1.25E 01 1.25E 01 1.26E 01 1.26E 01 1.26E 01 1.04E 01 9.50E 00 1.64E 01 7.50E 00 9.70E 00 6.60E 00 8.20E 00	# e 7.30E-01 7.60E-01 7.80E-01 7.10E-01 5.80E-01 4.20E-01 2.90E-01 1.70E-01 8.70E-02 3.90E-02 1.70E-01 8.00E-03 4.00E-03 4.00E-03	4.40E-02 2.90E-02 2.50E-02 2.50E-02 4.00E-02 5.50E-02 8.20E-02 1.12E-01 1.26E-01 1.26E-01 1.58E-01 1.58E-01 2.06E-01 1.85E-01 2.08E-01 1.72E-01 1.57E-01 1.57E-01 1.24E-01 1.24E-01 1.09E-01 1.09E-01
25 26	4.65E-07 2.15E-07	1.09E 03 4.09E 04	1.07E 03 4.08E 04	0.	1.80E 01 1.60E 02	4.00E-03 4.00E-03	2.97E-01 0.

.

HF								
h	E _h	σ _t	σ _γ	Øin	0 _e	۲ ⁶	σ _{be}	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25	1.05E 01 6.50E 00 4.00E 00 2.50E 00 1.40E 00 8.00E-01 4.00E-01 2.00E-01 4.65E-02 2.15E-02 4.65E-02 2.15E-02 4.65E-03 2.15E-03 1.00E-03 4.65E-04 2.15E-04 4.65E-05 2.15E-04 4.65E-05 2.15E-06 1.00E-06 4.65E-07	5.50E C0 6.08E 00 6.77E 00 6.90E C0 6.90E C0 7.10E 00 7.10E 00 7.67E 00 8.62E 00 9.91E C0 1.05E 01 1.22E 01 1.40E 01 1.67E 01 1.96E 01 2.04E 01 2.04E 01 2.04E 01 1.56E 01 1.56E 01 1.46E 03 7.59E C2 8.09E 02 8.11E 01 4.77E 01	1.50E-02 2.60E-02 4.60E-02 6.40E-02 8.70E-02 1.20E-01 1.70E-01 2.30E-01 3.20E-01 8.20E-01 1.14E 00 3.36E 01 3.36E 01 1.14E 01 8.60E 00 3.38E 01 2.88E 01 9.20E 00 8.91E 02 7.75E 02 7.27E 1 4.12E	2.73E 00 2.90E 00 2.90E 00 2.75E 00 2.13E 00 1.44E 60 8.40E-01 2.70E-01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.74E 00 3.15E 00 3.82E 00 4.09E 00 4.75E 00 5.54E 00 6.66E 00 8.12E 00 9.59E 00 9.59E 00 9.59E 00 1.14E 01 1.29E 01 1.49E 01 1.33E 01 9.00E 00 1.19E 01 2.73E 01 1.9E 01 2.73E 01 1.19E 01 6.40E 00 5.65E 02 1.05E 02 3.40E 01 8.40E 00 6.50E 00	7.60E-01 8.00E-01 7.60E-01 6.30E-01 4.60E-01 3.10E-01 1.80E-01 1.00E-01 5.40E-02 2.70E-02 7.00E-03 4.00E-03	3.80E-02 2.30E-02 2.60E-02 2.90E-02 5.00E-02 6.20E-02 8.90E-02 1.19E-01 1.32E-01 1.41E-01 1.63E-01 1.85E-01 2.16E-01 2.25E-01 1.93E-01 1.31E-01 1.73E-01 3.97E-01 1.73E-01 9.30E-02 8.22E 00 1.53E 00 4.95E-01 1.22E-01 9.50E-02	
26	2.15E-07	1.01E 02	9.31E 01	0.	8.00E 00	4.00E-03	0.	

